• Title/Summary/Keyword: bolted

Search Result 388, Processing Time 0.02 seconds

Damage assessment and performance-based seismic design of timber-steel hybrid shear wall systems

  • Li, Zheng;He, Minjuan;Li, Minghao;Lam, Frank
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.101-117
    • /
    • 2014
  • This paper presents a reliability-based analysis on seismic performance of timber-steel hybrid shear wall systems. Such system is composed of steel moment resisting frame and infill wood frame shear wall. The performance criteria of the hybrid system with respect to different seismic hazard levels were determined through a damage assessment process, and the effectiveness of the infill wood shear walls on improving the seismic performance of the hybrid systems was evaluated. Performance curves were obtained by considering different target non-exceedance probabilities, and design charts were further established as a function of seismic weight. Wall drift responses and shear forces in wood-steel bolted connections were used as performance criteria in establishing the performance curves to illustrate the proposed design procedure. It was found that the presence of the infill wood shear walls significantly reduced the non-performance probabilities of the hybrid wall systems. This study provides performance-based seismic evaluations on the timber-steel hybrid shear walls in support of future applications of such hybrid systems in multi-story buildings.

Cyclic tests on bolted steel and composite double-sided beam-to-column joints

  • Dubina, Dan;Ciutina, Adrian Liviu;Stratan, Aurel
    • Steel and Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • This paper summarises results of the research performed at the Department of Steel Structures and Structural Mechanics from the "Politehnica" University of Timisoara, Romania, in order to evaluate the performance of beam-to-column extended end plate connections for steel and composite joints. It comprises laboratory tests on steel and composite joints, and numerical modelling of joints, based on tests. Tested joints are double-sided, with structural elements realised of welded steel sections. The columns are of cruciform cross-section, while the beams are of I section. Both monotonic and cyclic loading, symmetrically and antisymmetrically, has been applied. On the basis of tested joints, a refined computer model has been calibrated using a special connection element of the computer code DRAIN 2DX. In this way, a static/dynamic structural analysis of framed structures with real characteristics of the beam to column joints is possible.

Three-dimensional finite element simulation and application of high-strength bolts

  • Long, Liji;Yan, Yongsong;Gao, Xinlin;Kang, Haigui
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.501-512
    • /
    • 2016
  • High-strength structural bolts have been utilized for beam-to-column connections in steel-framed structural buildings. Failure of these components may be caused by the bolt shank fracture or threads stripping-off, documented in the literature. Furthermore, these structural bolts are galvanized for corrosion resistance or quenched-and-tempered in the manufacturing process. This paper adopted the finite element simulation to demonstrate discrete mechanical performance for these bolts under tensile loading conditions, the coated and uncoated numerical model has been built up for two numerical integration methods: explicit and implicit. Experimental testing and numerical methods can fully approach the failure mechanism of these bolts and their ultimate load capacities. Comparison has also been conducted for two numerical integration methods, demonstrating that the explicit integration procedure is also suitable for solving quasi-static problems. Furthermore, by using precise bolt models in T-Stub, more accurately simulate the mechanical behavior of T-Stub, which will lay the foundation of the mechanical properties of steel bolted joints.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

  • Mohammadjani, Chia;Yousefi, Amir M.;Cai, Shu Qing;Clifton, G. Charles;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.727-734
    • /
    • 2017
  • This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.

Investigation of shear lag effect on tension members fillet-welded connections consisting of single and double channel sections

  • Barkhori, Moien;Maleki, Shervin;Mirtaheri, Masoud;Nazeryan, Meissam;Kolbadi, S.Mahdi S.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.445-455
    • /
    • 2020
  • Shear lag phenomenon has long been taken into consideration in various structural codes; however, the AISC provisions have not proposed any specific equation to calculate the shear lag ratio in some cases such as fillet-welded connections of front-to-front double channel sections. Moreover, those equations and formulas proposed by structural codes are based on the studies that were conducted on riveted and bolted connections, and can be applied to single channel sections whilst using them for fillet-welded double channels would be extremely conservative due to the symmetrical shape and the fact that bending moments will not develop in the gusset plate, resulting in less stress concentration. Numerical models are used in the present study to focus on parametric investigation of the shear lag effect on fillet-welded tension connection of double channel section to a gusset plate. The connection length, the eccentricity of axial load, the free length and the thickness of gusset plate are considered as the key factors in this study. The results are then compared to the estimates driven from the AISC-LRFD provisions and alternative equations are proposed.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

An Experimental Study on Flexural Performance of Precast Concrete Modular Beam Systems (프리캐스트 콘크리트 모듈러 보 시스템의 휨 성능에 대한 실험적 연구)

  • Ro, Kyong Min;Cho, Chang Geun;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.3
    • /
    • pp.69-76
    • /
    • 2021
  • Precast concrete (PC) modules have been increased its use in modular buildings due to their better seismic performance than steel modules. The main issue of the PC module is to ensure structural performance with appropriate connection methods. This study proposed a PC modular beam system for simple construction and improved structural and splicing performance. This modular system consisted of modules with steel plates inserted, and it is easy to construct by bolted connection. The steel plates play the role of tensile rebar and stirrup, which has the advantage of structural performance. The structural performance of the proposed PC modular beam system was evaluated by flexural test on one reinforced concrete (RC) beam specimen consisting of a monolithic, and two PC specimens with the proposed PC modular beam system. The results demonstrated that the proposed PC modular beam system achieved approximately 86% of the structural performance compared to the RC monolithic specimen, with similar ductility of approximately 1.06 fold greater.

Effect of connection modeling on the seismic response of steel braced non-moment resisting frames

  • Bagheri, Saman;Tabrizi, Navid Vafi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.591-601
    • /
    • 2018
  • Non-moment beam-to-column connections, which are usually referred to as simple or shear connections, are typically designed to carry only gravity loads in the form of vertical shears. Although in the analysis of structures these connections are usually assumed to be pinned, they may provide a small amount of rotational stiffness due to the typical connection details. This paper investigates the effects of this small rotational restraint of simple beam-to-column connections on the behavior and seismic response of steel braced non-moment resisting frames. Two types of commonly used simple connections with bolted angles, i.e., the Double Web angle Connection (DWC) and Unstiffened Seat angle Connection (USC) are considered for this purpose. In addition to the pinned condition - as a simplified representation of these connections - more accurate semi-rigid models are established and then applied to some frame models subjected to nonlinear pushover and nonlinear time history analyses. Although the use of bracing elements generally reduces the sensitivity of the global structural response to the behavior of connections, the obtained results indicate considerable effects on the local responses. Namely, our results show that consideration of the real behavior of connections is essential in designing the column elements where the pin-connection assumption significantly underestimates design of outer columns of upper stories.

Detection and location of bolt group looseness using ultrasonic guided wave

  • Zhang, Yue;Li, Dongsheng;Zheng, Xutao
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.293-301
    • /
    • 2019
  • Bolted joints are commonly used in civil infrastructure and mechanical assembly structures. Monitoring and identifying the connection status of bolts is the frontier problem of structural research. The existing research is mainly on the looseness of a single bolt. This article presents a study of assessing the loosening/tightening health state and identifying the loose bolt by using ultrasonic guided wave in a bolt group joint. A bolt-tightening index was proposed for evaluating the looseness of a bolt connection based on correlation coefficient. The tightening/loosening state of the bolt was simulated by changing the bolt torque. More than 180 different measurement tests for total of six bolts were conducted. The results showed that with the bolt torque increases, value of the proposed bolt-tightening index increases. The proposed bolt-tightening index trend was very well reproduced by an analytical expression using a function of the torque applied with an overall percentage error lower than 5%. The developed damage index based on the proposed bolt-tightening index can also be applied to locate the loosest bolt in a bolt group joint. To verify the effectiveness of the proposed method, a bolt group joint experiment with different positions of bolt looseness was performed. Experimental results show that the proposed approach is effective to detect and locate bolt looseness and has a good prospect of finding applications in real-time structural monitoring.