• Title/Summary/Keyword: bolted

Search Result 388, Processing Time 0.034 seconds

Parameter Estimation and Reliability Analysis Using Bayesian Approach for Bolted Joint and O-ring Seal of Solid Rocket Motor (고체 로켓 모터의 체결 볼트와 오링에 대한 베이지안 접근법 기반 모수 추정과 신뢰성 해석)

  • Gang, Jin Hyuk;Choi, Joo Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1055-1064
    • /
    • 2017
  • Since a device such as a rocket motor requires very high reliability, a reasonable reliability design process is essential. However, Korea has implemented a design method for applying a safety factor to each component. In classic reliability analysis, input variables such as mean and standard deviation, used in the limit state function, are treated as deterministic values. Because the mean and standard deviation are determined by a small amount of data, this approach could lead to inaccurate results. In this study, reliability analysis is performed for bolted joints and o-ring seals, and the Bayesian approach is used to statistically estimate the input variables. The estimated variables and failure probability, calculated by the reliability analysis, are derived in the form of probability distributions.

Strength Analysis of Composite Double-lap Bolted Joints by Progressive Failure Theory Based on Damage Variables (손상변수기반 점진적 파손이론을 이용한 복합재 이중 겹침 볼트 체결부의 강도 해석)

  • Kim, Sang-Kuk;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.91-98
    • /
    • 2013
  • A three-dimensional finite analysis method was proposed to predict the failure of composite double-lap bolted joints, which is based on the stiffness degradation method using damage variables and Hashin's three-dimensional failure criteria. Ladeveze's theory using damage variables to consider the matrix/shear damage was combined with stiffness degradation in fiber direction. Four different failure modes were considered including matrix compression/shear, matrix tension/shear, fiber compression, and tension failures. The friction between bolt and composite and the clamping force were considered using a commercial finite element software ABAQUS. The damage model was incorporated using the user-defined subroutine of the software. The predicted result was verified with the existing test result for bearing tension double shear and showed the deviation ranging 7~16% from test results.

Design and Implementation of Remote Monitoring System for Underground Low Voltage Handhole Using Zigbee Communication (지그비 통신을 이용한 지중저압접속함 원격 모니터링 시스템 설계 및 구현)

  • Weon, La-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.58-67
    • /
    • 2019
  • The low-voltage connection box used as a low-voltage transmission line of KEPCO is intended to branch or connect to an underground line. In comparison with the utility considering the aesthetics of the distance, and safety measures are needed. In this paper, temperature and humidity, $CO_2$, water level, acceleration, and vibration sensor are installed inside the underground low voltage handhole, and the sensor data is transmitted to the ground using the Zigbee module. Antenna (Bolted Antenna) for communication with the ground was proposed and the data reception through it was confirmed. In the LF mode and the HEX mode, the transmitted data was confirmed to be a perfect reception success rate. In the case of the bolted antenna, the difference between the ground state and the underwater state was observed as a result of the experiment in the environmental environment. However, It was judged that reception sensitivity was sufficient for communication. The received data could be confirmed through PC based GUI.

Behaviour and design of stainless steel shear connectors in composite beams

  • Yifan Zhou;Brian Uy;Jia Wang;Dongxu Li;Xinpei Liu
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.175-193
    • /
    • 2023
  • Stainless steel-concrete composite beam has become an attractive structural form for offshore bridges and iconic high-rise buildings, owing to the superior corrosion resistance and excellent ductility of stainless steel material. In a composite beam, stainless steel shear connectors play an important role by establishing the interconnection between stainless steel beam and concrete slab. To enable the best use of high strength stainless steel shear connectors in composite beams, high strength concrete is recommended. To date, the application of stainless steel shear connectors in composite beams is still very limited due to the lack of research and proper design recommendations. In this paper, a total of seven pushout specimens were tested to investigate the load-slip behaviour of stainless steel shear connectors. A thorough discussion has been made on the differences between stainless steel bolted connectors and welded studs, in terms of the failure modes, load-slip behaviour and ultimate shear resistance. In parallel with the experimental programme, a finite element model was developed in ABAQUS to simulate the behaviour of stainless steel shear connectors, with which the effects of shear connector strength, concrete strength and embedded connector height to diameter ratio (h/d) were evaluated. The obtained experimental and numerical results were analysed and compared with existing codes of practice, including AS/NZS 2327, EN 1994-1-1 and ANSI/AISC 360-16. The comparison results indicated that the current codes need to be improved for the design of high strength stainless steel shear connectors. On this basis, modified design approaches were proposed to predict the shear capacity of stainless steel bolted connectors and welded studs in the composite beams.

Shear performance and design recommendations of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite beams

  • Zhuangcheng Fang;Jinpeng Wu;Bingxiong Xian;Guifeng Zhao;Shu Fang;Yuhong Ma;Haibo Jiang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.319-336
    • /
    • 2024
  • Ultra-high-performance concrete (UHPC) has attracted increasing attention in prefabricated steel-concrete composite beams as achieving the onsite construction time savings and structural performance improvement. The inferior replacement and removal efficiency of conventional prefabricated steel-UHPC composite beams (PSUCBs) has thwarted its sustainable applications because of the widely used welded-connectors. Single embedded nut bolted shear connectors (SENBs) have recently introduced as an attempt to enhance demountability of PSUCBs. An in-depth exploration of the mechanical behavior of SENBs in UHPC is necessary to evidence feasibilities of corresponding PSUCBs. However, existing research has been limited to SENB arrangement impacts and lacked considerations on SENB geometric configuration counterparts. To this end, this paper performed twenty push-out tests and theoretical analyses on the shear performance and design recommendation of SENBs. Key test parameters comprised the diameter and grade of SENBs, degree and sequence of pretension, concrete casting method and connector type. Test results indicated that both diameters and grades of bolts exerted remarkable impacts on the SENB shear performance with respect to the shear and frictional responses. Also, there was limited influence of the bolt preload degrees on the shear capacity and ductility of SENBs, but non-negligible contributions to their corresponding frictional resistance and initial shear stiffness. Moreover, inverse pretension sequences or monolithic cast slabs presented slight improvements in the ultimate shear and slip capacity. Finally, design-oriented models with higher accuracy were introduced for predictions of the ultimate shear resistance and load-slip relationship of SENBs in PSUCBs.

An Experimental and Analytical Studies on the Mechanical Behavior of High Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 이음부의 역학적 거동에 관한 실험 및 해석적 연구)

  • Lee, Seung Yong;Park, Young Hoon;Cho, Sun Kyu;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.355-367
    • /
    • 1998
  • To evaluate the mechanical behavior and the compressive stress distribution in high tension bolted joints according to the size of bolt hole, the experimental and analytical studies are performed with enlarging bolt hole size. In experimental study, the static test is performed to measure the slip coefficient, and the fatigue test is also performed to evaluate the fatigue strength and failure pattern of fatigue crack. In analytical study, the compressive stress distribution is investigated by using the finite element analysis. From the result of experimental study, the slip coefficient and fatigue strength of the high tension bolted joints with oversize hole are not much different but somewhat it has decreased. These are because the size of bolt hole is larger than the holes of nominal size, therefore the width of clamping force is decreased and the compressive stress distribution area is smaller, this is certificated in the finite element analysis. In addition, the origin of fatigue crack in the oversize holes is closer to the hole than in the holes of nominal size, consequently it is investigated that the origin of fatigue crack is intimately associated with the compressive stress distribution which is formulated by the clamping force in both base metal and splice plate.

  • PDF

Monotonic Loading Test for CFT Square Column-to-Beam Partially Restrained Composite Connection (CFT 각형 기둥-보 합성 반강접 접합부의 단조가력 실험)

  • Choi, Sung Mo;Park, Su Hee;Park, Young Wook;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.325-335
    • /
    • 2005
  • This study tackles the development of an improved detail of partially restrained CFT square column-to-beam connection and the evaluation of its mechanical behavior under monotonic loading. The connection is designed to strengthen shearing capacity at the bottom of the connection due to the ultimate behavior of PR-CC by its detail of the bottom connection and simplify the fabrication process. The suggested connection is the welded bottom beam flange connection(M-2) and is compared with the existing PR-CC of bolted seat angle connection(M-1). Two specimens were fabricated in actual size and tested under monotonic loading. Based on the test results, the welded bottom beam flange connection exhibited about 85% of the stiffness of steel beam. It was similar to the bolted seat angle connection and behaved as PR-CC. The specimen of the supposed connection type failed at the shear connection of web but was similar to the bolted seat angle connection until the failure. It obtained sufficient stiffness and capacity through the reinforcingsteel and the capacity and deformational ability equivalent to the full-plastic moment through the anchor inside the steel tube at the web connection. So, it can be said that the suggested connection exhibits sufficient ductile behavior.

Compressive Stress Distribution of High Tension Bolted Joints (고장력 볼트 이음부의 내부 압축응력 분포)

  • Kim, Sung Hoon;Lee, Seung Yong;Choi, Jun Hyeok;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.171-179
    • /
    • 1997
  • The high-tension bolted joints are clamped by the axial force which approaches the yielding strength. The introduced axial force is transmitted to the connection members pass through washer. The transferred load in connections is balanced to the compressive stress of plates, axial force in bolts and the external loads. In this mechanism, the compressive stress and slip load we dominated by the effective stiffness of bolted joints and plates. In general the effective stiffness is specified to product to the effective area and elasticity modulus in connections. In this reason, the conic projection formular which is assumed that the axial force in bolts is distributed to the cone shape and that region is related to the elastic deformation mechanism in connections, was proposed. But it conclude what kind of formula is justified. Therefore in this paper, the fatigue tests are performed to the high tension bolted joints and inspected to the phase on the friction face. And using the FEM and numerical method, it is analyzed and approximated to the compressive stress distribution and its region. Moreover, it is estimated to the effective area and to the relation the friction area to the effective compressive distribution region.

  • PDF

A Preliminary Drop Test of a Type IP-2 Transport Package with a Bolted Lid Type (볼트체결방식의 IP-2형 운반용기의 낙하예비시험)

  • Kim Dong-Hak;Seo Ki-seog;Park Hong Yun;Lee Kyung Ho;Yoon Jeong-Hyoun;Lee Heung-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.339-347
    • /
    • 2005
  • A type IP-2 transport package should prevent a loss or dispersal of the radioactive contents and a more than $20\%$ increase in the maximum radiation level at any external surface of the package when it were subjected to the drop test under the normal conditions of transport. If a shielding thickness of IP-2 transport package is thick, a bolted lid type may prevent a loss or dispersal of the radioactive contents than the door type of ISO containers which are generally used as a type IP-2 transport package. In this paper, to evaluate the effect of drop directions on the bolt tension and the coherence of a bolt, the drop tests of preliminary small model are tested and evaluated for seven directions before the drop test of a type IP-2 transport package with a bolted lid type under the normal conditions of transport. Seven drop directions which are a bottom-vertical drop, a lid-vortical drop. a horizontal drop and four corner drops have been carried out. Using a force sensor, the bolt tension during the drop impact is measured. The coherence of bolt is evaluated by the difference between the fastening torque of bolt before a drop test and the unfastening torque of bolt after a drop impact.

  • PDF

Strength Property of Double Shear Bolted-Connections of Larch (낙엽송 부재의 이중 전단 볼트 접합부 강도 성능)

  • Park, Chun-Young;Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.7-16
    • /
    • 2005
  • This study was carried out to evaluate the structural property of double shear bolted connections in Korean Larch. For the main member, sawn lumber and Glulam were used in which thickness of lumber is 39 mm, 89 mm, 139 mm, 189 mm and Glulam 80 mm, 140 mm, 170 mm. For the side member, sawn lumber and steel plate were used in which thickness of lumber is the same of the main member and steel plate is 6mm. And connections were jointed by M12, M16, M20 bolts which were usually used for wood constructions in Korea. Directions of loading to connections were perpendicular and parallel to grain of main and side member. First, through the dowel bearing test, the dowel bearing strength was evaluated and through the bolt bending tests, the bolt bending strength was evaluated. And then experiments for the connection were performed. Obtained results from experiments were compared with calculated values by EYM and analyzed. Strength of double shear bolted connections in Korean Larch was similar or higher than calculated value by EYM. Especially when the side member was made by the sawn lumber, it was similar to the calculated value. In failure mode, the mode was effected by the knot and the dry defect. In the thin main member, it was shown mode I and as the thickness of the main member was thicker, it was changed into mode III.