• 제목/요약/키워드: bolt-load curve

검색결과 17건 처리시간 0.024초

밀착조임 볼트체결방법에 따른 엔드플레이트 접합부의 구조성능평가 (Evaluation of Structural Behavior of Tapered Member with Snug-tightened Flush End-plate Connection)

  • 정경수;김우식;박만우;도병호
    • 한국강구조학회 논문집
    • /
    • 제22권2호
    • /
    • pp.121-128
    • /
    • 2010
  • 저층 장스팬 철골프레임에는 강재절감을 위해 휨모멘트 저항에 극대화한 판폭 두께비가 큰 변단면 부재를 사용하고 있다. 게다가, 밀착조임 볼트접합은 고장력 볼트조임에 비하여 공사비 절감과 시공용이성의 장점을 지니고 있다. 한편, 밀착조임 엔드플레이트 접합사용에 다수 장점을 가지고 있음에도 불구하고 구조적 거동 및 해석상의 복잡함이 존재한다. 이에 본 연구에서는 밀착조임 엔드플레이트 접합형 변단면 부재에 대한 실대형 실험을 행하였다. 변수로는 체결 토크치, 재하패턴, 볼트종류, 접합부 파괴형이다. Silva et al.과 AISC(2003)에서 제시한 강성 및 내력식을 이용한 예측결과를 실험결과와 비교하였다.

침투수력을 고려한 전면접착형 록볼트의 거동연구 (Behavior of Grouted Bolts in Consideration of Seepage Forces)

  • 이인모;김경화;신종호;박종관
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1259-1266
    • /
    • 2005
  • In a NATM tunnel, fully grouted bolts are widely used as part of supporting system. Grouted bolts play an important role not as to take some parts of load acting on a tunnel lining but as to reinforce the ground adjacent the tunnel. In conjunction with tunnel construction, the presence of groundwater may pose a number of difficulties. With respect to tunnel design, influences of groundwater on tunnel behavior have been considered in many aspects. However, the effect on grouted bolts has been rarely investigated. In this study, the behavior of grouted bolts, which are affected by the seepage forces, was examined. To investigate the effects of seepage forces, the theoretical solutions for a drained condition were also found. Based on the theoretical solutions, ground reaction curves considering seepage forces were obtained. By comparing the ground reaction curves supported by grouted bolts with those for the unsupported cases, the effect of reinforcement was evaluated. Finally, through comparison between supported ground reaction curves in the drained condition and those in the case of groundwater flow, it was found that the grouted bolts are more structurely beneficial when the seepage occurs towards the tunnel than when there is no groundwater flow.

  • PDF

강재 보-PC 보가 강접합 연결된 하이브리드 보의 휨 거동 평가 (Evaluation on Flexural Behavior of Hybrid Beams with Rigid Joint Connecting Steel and Precast Concrete Elements)

  • 서은아;양근혁;홍승현
    • 콘크리트학회논문집
    • /
    • 제28권1호
    • /
    • pp.13-21
    • /
    • 2016
  • 기존의 강재 보가 콘크리트에 매립되어 볼트접합 연결되는 기존 하이브리드 접합법의 한계와 단점을 개선하기 위하여 단순한 강접합 절점을 갖는 하이브리드 PC 콘크리트 보 시스템을 개발하였다. 개발된 하이브리드 시스템의 원할한 하중전달을 파악하기 위하여 양단 고정단의 보 실험체 3개를 반복 집중하중 하에서 실험하였다. 주요 변수는 강재 보의 길이로서 지점에서 변곡점까지의 거리의 0.25, 0.5 및 1.0배로 변하였다. 모든 실험체는 동일 주철근 지수를 갖는 철근콘크리트 보에 비해 높은 변위 연성비를 나타냈는데, 보의 반복하중-처짐 관계 및 연성은 강재 보의 길이에 영향을 받지 않았다. 보 길이에 따른 연속 변형률 분포 및 붕괴하중에 기반한 극한하중 예측으로부터 제시된 강접합 절점은 구조적 효율성을 갖는다고 판단된다.

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가 (Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections)

  • 김재영;김용남;서민정;김범진;김승직;이기학
    • 한국지진공학회논문집
    • /
    • 제28권3호
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • 제87권2호
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

침투수력을 고려한 전면접착형 록볼트의 거동연구 (Behavior of grouted bolts in consideration of seep age forces)

  • 이인모;김경화;신종호;남석우
    • 한국터널지하공간학회 논문집
    • /
    • 제7권3호
    • /
    • pp.209-218
    • /
    • 2005
  • 전면접착형 록볼트는 NATM 터널에서 지보재로 널리 쓰이고 있다. 터널에 가해지는 하중을 받아주기보다는 터널 주변을 보강하는 지보재로서의 기능을 하기 때문에 많은 연구지들에 의해 전면접착형 록볼트의 거동이 연구되어 왔다. 터널 시공에 있어서 지하수는 간과할 수 없는 중요한 문제이나 지금까지 터널에 설치되는 전면접착형 록볼트의 거동을 연구하는데 있어서 침투수력 문제는 거의 고려하지 않았다. 본 논문에서는 침투수력의 영향을 받는 전면접착형 록볼트의 거동에 대해서 연구하였다. 침투수력이 전면접착형 록볼트에 미치는 영향을 평가하기 위해서 침투수력이 작용하는 상태에서 록볼트에 작용하든 축력을 이론식으로 유도하였다. 이렇게 구한 이론식을 바탕으로 침투수력을 고려한 록볼트로 보강된 지반의 지반반응곡선을 구하였고 침투수력이 작용하든 경우에 대해서 록볼트의 보강효과를 확인하기 위해 보강되지 않은 지반의 지반반응곡선과 비교를 수행하였다. 마지막으로 침투수력이 작용하지 않는 경우의 지반반응곡선과 비교함으로써 침투수력이 작용할 경우, 록볼트의 지반보강효과가 증가함을 확인하였다.

  • PDF