• Title/Summary/Keyword: bolt-deformation

Search Result 105, Processing Time 0.023 seconds

Flexural Behavior of Steel Composite Beam with Built-up Cross-section Considering Bolt Deformation (볼트의 변형을 고려한 강재 조립 합성보의 휨거동)

  • Kim, Sung-Bo;Kim, Hun-Kyom;Jung, Kyoung-Hwan;Han, Man-Yop;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2008
  • The analysis and results of flexural behavior for steel composite beam with built-up cross-section considering bolt deformation are presented in this paper. The bolt deformation and the restrict effect due to bolt-connection and friction are considered to investigate the flexural behavior of steel composite beam. Nonlinear spring element in ABAQUS is used to consider bolt deformation, also the results are compared with those in case bolt deformations are ignored. The displacement, bending stresses and shear stresses are calculated by F.E. model, and these results are compared with the analytical value of no interaction beam, partial interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel. When the composite rate is more than 50%, the behavior of composite beam considering the effects of bolt deformation is similar to that of fully composite beam.

An Analysis of Plastic Deformation Developed During Interference Fitting of Disk Brake Hub Bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.407-411
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit(bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

New reinforcement algorithms in discontinuous deformation analysis for rock failure

  • Chen, Yunjuan;Zhu, Weishen;Li, Shucai;Zhang, Xin
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.787-803
    • /
    • 2016
  • DDARF (Discontinuous Deformation Analysis for Rock Failure) is a numerical algorithm for simulating jointed rock masses' discontinuous deformation. While its reinforcement simulation is only limited to end-anchorage bolt, which is assumed to be a linear spring simply. Here, several new reinforcement modes in DDARF are proposed, including lining reinforcement, full-length anchorage bolt and equivalent reinforcement. In the numerical simulation, lining part is assigned higher mechanical strength than surrounding rock masses, it may include multiple virtual joints or not, depending on projects. There must be no embedding or stretching between lining blocks and surrounding blocks. To realize simulation of the full-length anchorage bolt, at every discontinuity passed through the bolt, a set of normal and tangential spring needs to be added along the bolt's axial and tangential direction. Thus, bolt's axial force, shearing force and full-length anchorage effect are all realized synchronously. And, failure criterions of anchorage effect are established for different failure modes. In the meantime, from the perspective of improving surrounding rock masses' overall strength, a new equivalent and tentative simulation method is proposed, it can save calculation storage and improve efficiency. Along the text, simulation algorithms and applications of these new reinforcement modes in DDARF are given.

Force-Deformation Relationship of Bearing-Type Bolted Connections Governed by Bolt Shear Rupture (볼트 전단파단이 지배하는 지압형식 볼트접합부의 힘-변형 관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • Well-designed bolted connections can exhibit excellent ductile behavior through bearing mechanism until the occurrence of bolt shear rupture. The ultimate strength analysis of eccentric bolted connections is an economical and mechanistic approach which uses such ductility. However, the bolt load-deformation relationship, which forms basis of the current practice, is based on very limited combinations of bolt and steel materials. The primary objective of this study was to establish the general bolt force-deformation relationship based on systematic single-bolt bearing connection tests. The test results showed that the projected area of the bolt hole and the strength and thickness of the plate to be connected are the main factors affecting the force-deformation relationship. The results of this study can be used for the instantaneous center of rotation method (ICRM) to achieve more accurate analysis and economical design of a variety of group-bolted connections subjected to eccentric shear.

Study on the Tightening Force and the Friction Coefficient in a Bolt tightened upto the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.33-37
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding is governed by the combined stresses due to the axial force developed in the bolt and the frictional torque developed on the thread in contact with the nut. Consideration is taken account of the fact that the unused portion of the thread has least sectional area being subject to initial yielding. Once yielding has taken place some strain hardening effect will result, Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of common and fine series thread are used for computational purposes. Variation of axial forces and frictional torques vs. the frictional coefficients tare presented together with other plots showing some characteristics of bolt under plastic deformation.

  • PDF

An analysis of plastic deformation occurring by interference fit of disk brake hub bolt (디스크 브레이크 허브 볼트의 억지 끼워 맞춤에서 발생하는 소성변형의 해석)

  • Lee, J.S.;Kwak, S.Y.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.238-241
    • /
    • 2008
  • A brake system in automobile is one of the important parts that directly affect the safety of passengers. Particularly, disk brake module is applied to almost all kinds of automobile brake system due to its remarkable braking power and braking distance. In the disk brake module of an automobile, the bolt for tire wheel is assembled to the disk brake hub by interference fit (bolt pressing process). The process induces small deformation whose range is within tens of ${\mu}m$ and this deformation may cause the runout badness of the whole disk brake module, and even braking problems such as judder or squeal phenomena which makes the loss of braking efficiency. In this study, bolt pressing fit into hub was simulated by $ANSYS^{TM}$, a commercial structure analysis program. Also, the aspect and the cause of hub displacement were analyzed and the solution for decreasing runout of hub was proposed.

  • PDF

A Proposal of Steel Structure Beam-to-Column Connection Appling High Strength Bolt Improved in Deformation Capacity (고력볼트의 변형능력을 향상시킨 강구조 보-기둥 접합부의 제안)

  • Kim, Seung-Goo;Lee, Seung-Jae;Oh, Sang-Hoon;Kang, Cang-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.182-188
    • /
    • 2006
  • This study propose cutting body portion-high strength bolts to improve deformation capacity of High strength bolts, which are the mechanical fasteners used for End-plate connection. And, we report that loading test results of steel beam-to-column connection using high deformation capacity-high strength bolts in accordance with SAC2000 loading program. As a result, the initial stiffness and the maximum strength of the connection using high deformation capacity-high strength bolts, are approximately the same in comparison with those of the end-plate connection using the existing high strength bolts. But the deformation capacity of the connection is more than twice as much as those.

  • PDF

A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts (Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구)

  • Yoon, D.J.;Hahm, S.Y.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

Finite Element Analysis of Mechanical Behavior of Bolt Tightened in Plastic Region (소성역 체결 볼트의 기계적 거동 유한요소해석)

  • Cho, Sung-San;Shin, Chun-Se
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • Plastic region tightening is widely used in critical bolted joints in internal combustion engines in order to reduce the engine weight by maximizing the use of load-carrying capacity of bolt. Mechanical behavior of bolt tightened in plastic region under external axial tensile load is investigated for various friction conditions using three dimensional finite element analysis. The behavior of bolt tightened in elastic region as well as that in tensile test are investigated for comparison. Tightening process is simulated by rotating the bolt in order to examine the friction effect realistically. It is revealed that the bolt tightened in plastic region can carry more external load until the joint is opened, and yields at lower bolt load than the bolt tightened in elastic region. The friction coefficient has effect on the yield load, but not on the load-carrying capacity. Moreover, the scatter in the bolt preload due to friction begins with plastic deformation of bolt in the angle tightening control, whereas it begins with the onset of tightening in the torque tightening control. The observations are interpreted with the residual torsional stress in the bolt generated during the tightening.

Study on the Clamping Force and the Friction Coefficient in a Bolt tightened up to the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.133-141
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding may be governed by the combined stresses due to the axial force developed in the bolt and the frictional torque induced on the thread by the contact with the nut. Consideration is taken account of the fact that the unengaged portion of the thread has least sectional area, being subject to initial yielding. Once yielding has taken place some strain hardening effect may result. Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of fine threads are used for both computational and experimental purposes. Variation of axial forces and frictional torques vs. the frictional coefficients are presented together with other plots showing some characterist of bolt under plastic deformation. Finally, a design and control aid for the tightening(i.e., kind of nomograph) is presented, showing the relationships among the torque factor and frictional coefficients for that particular bolt used in the experiment.

  • PDF