• Title/Summary/Keyword: bolt joint

Search Result 212, Processing Time 0.029 seconds

The Characteristics of Elasto-Plastic Behaviour for the Latticed Dome Structures (래티스 돔 구조물의 탄소성 거동 특성에 관한 연구)

  • Park, Chul-Ho;Han, Sang-Eul;Yang, Jea-Guen
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.53-62
    • /
    • 2004
  • A single layer latticed dome is one of the most efficient structures because of its low specivic gravity. For easily analyzing of a single layer latticed dome, joint system is assumed to be pin or rigid joint. However, its joint uses ball whose system has intermediate properties of pin and rigid joint. Therefore this study has a grasp of bending rigidity, stress and mechanical properties through experimental and analyzing method of the bolt inserted ball joint. To analyze the stress of bolt and sleeve, this study uses through 3D elastic contact and cubic element, and then the ball and the bolt are perfectly connected for easily analyzing Compared experimental results to F.E.M, each specimen has an error of less than 12 percent. In the results of stress distribution through F.E.M, stress occurs from bottom of bolt to top of sleeve, and most of tension appears on the bolt, also compression occurs from upper parts of the bolt to the sleeve. The assumption of bending stiffness in ball joint is well known that bolt resists only tension and upper sleeve resiss compression. The results of experiment and analysis have $7{\sim}56%$ error, assuring that upper part of bolt occurs of partial compression. In the result of modified assumption have $4{\sim}20%$ error.

  • PDF

Vision-based technique for bolt-loosening detection in wind turbine tower

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Choi, Sang-Hoon;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.709-726
    • /
    • 2015
  • In this study, a novel vision-based bolt-loosening monitoring technique is proposed for bolted joints connecting tubular steel segments of the wind turbine tower (WTT) structure. Firstly, a bolt-loosening detection algorithm based on image processing techniques is developed. The algorithm consists of five steps: image acquisition, segmentation of each nut, line detection of each nut, nut angle estimation, and bolt-loosening detection. Secondly, experimental tests are conducted on a lab-scale bolted joint model under various bolt-loosening scenarios. The bolted joint model, which is consisted of a ring flange and 32 sets of bolt and nut, is used for simulating the real bolted joint connecting steel tower segments in the WTT. Finally, the feasibility of the proposed vision-based technique is evaluated by bolt-loosening monitoring in the lab-scale bolted joint model.

The effect of bolt tightening methods and sequence on the performance of gasketed bolted flange joint assembly

  • Abid, Muhammad;Khan, Yasir Mehmood
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.843-852
    • /
    • 2013
  • This paper presents results of the effect of different bolt tightening sequences and methods on the performance of gasketed bolted flange joint using nonlinear finite element analysis. Bolt preload scatter due to elastic interactions, flange stress variation and bolt bending due to flange rotation and gasket contact stress variation is difficult to eliminate in torque control method i.e. tightening one bolt at a time. Although stretch control method (tightening more than one bolt at time) eradicates the bolt preload scatter, flange stress variation is relatively high. Flange joint's performance is compared to establish relative merits and demerits of both the methods and different bolt tightening sequences.

Structural Performance Evaluation of Bolt Connection for Half-sphere Joint between PHC Pile and Steel Column (강재기둥-PHC 파일 간 반구형 접합부(HAT Joint)의 볼트 연결에 대한 구조성능평가)

  • Oh, Jintak;Kim, Sang-Bong;Kim, Young-Sik;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.65-72
    • /
    • 2015
  • To overcome the weakness of spread foundation in large space structure, the research of precast pile for replace spread foundation have been conducted. The new type of joint between PHC pile and steel column is named HAT Joint(Hollow hAlf-sphere cast-sTeel Joint). It connected PHC Pile by bolt that verification of bolt connection should be accomplished. In this paper, pull-out test and flexural performance for HAT Joint to verifying the bolt connection is explained. As a result, the pull-out and flexural capacities of bolt were checked to use in real structure. Furthermore, the equation of pull-out strength was proposed.

Detection and location of bolt group looseness using ultrasonic guided wave

  • Zhang, Yue;Li, Dongsheng;Zheng, Xutao
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.293-301
    • /
    • 2019
  • Bolted joints are commonly used in civil infrastructure and mechanical assembly structures. Monitoring and identifying the connection status of bolts is the frontier problem of structural research. The existing research is mainly on the looseness of a single bolt. This article presents a study of assessing the loosening/tightening health state and identifying the loose bolt by using ultrasonic guided wave in a bolt group joint. A bolt-tightening index was proposed for evaluating the looseness of a bolt connection based on correlation coefficient. The tightening/loosening state of the bolt was simulated by changing the bolt torque. More than 180 different measurement tests for total of six bolts were conducted. The results showed that with the bolt torque increases, value of the proposed bolt-tightening index increases. The proposed bolt-tightening index trend was very well reproduced by an analytical expression using a function of the torque applied with an overall percentage error lower than 5%. The developed damage index based on the proposed bolt-tightening index can also be applied to locate the loosest bolt in a bolt group joint. To verify the effectiveness of the proposed method, a bolt group joint experiment with different positions of bolt looseness was performed. Experimental results show that the proposed approach is effective to detect and locate bolt looseness and has a good prospect of finding applications in real-time structural monitoring.

Strength Analysis of Bolt Joints for an Open Frame Structure (개방형 프레임 구조물의 볼트 조인트 강도해석)

  • Lee, Jin-Min;Lee, Min-Uk;Cho, Su-Kil;Koo, Man-Hoi;Gimm, Hak-In;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.819-825
    • /
    • 2009
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by coupling method to constrain degree of freedoms between adjacent nodes. However, the coupling method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

Strength Design of Bolt Joints for an Open Frame Structure (개방형 프레임 구조물의 볼트 조인트 강도설계)

  • Lee, Jin-Min;Lee, Min-Uk;Cho, Su-Kil;Koo, Man-Hoi;Gimm, Hak-In;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.523-528
    • /
    • 2008
  • An open frame structure is fastened by bolt joints for strength and shock attenuation. Therefore the full finite element model of an open frame structure should be properly modeled including bolt joints for strength analysis of the frames and joint assemblies which are operated under multi-loading conditions such as driving, drop, inertia and torsional loads. Then the joints and frames must satisfy the specified allowable strength constraints. Because the full finite element model has a large number of elements to perform strength analysis, a detailed fine bolt analysis seems to be very expensive. Therefore bolts of the full finite element model are approximately modeled by constraints equations to constrain degree of freedoms between adjacent nodes. However, the constraints equation method can exaggerate stress results at the constrained nodes. Thus a detailed bolt analysis and a theoretical/experiential formula of bolts for a worst bolt joint are performed using reaction force applied both bolt and bolt joint. Finally, the results from the two methods are compared and discussed to verify the safety of the open frame structure.

  • PDF

Investigation of Tensile Behaviors in Open Hole and Bolt Joint Configurations of Carbon Fiber/Epoxy Composites

  • Dong-Wook Hwang;Sanjay Kumar;Dong-Hun Ha;Su-Min Jo;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2023
  • This study investigated the open hole tensile (OHT) properties of carbon fiber/epoxy composites and compared them to bolt joint tensile (BJT) properties. The net nominal modulus and strength (1376 MPa) were found to be higher than the gross nominal strength (1041 MPa), likely due to increasing hole size. The OHT and BJT specimens exhibited similar stiffness, as expected without bolt rotation causing secondary bending. OHT specimens experienced a sharp drop in stress indicating unstable crack propagation, delamination, and catastrophic failure. BJT specimens failed through shear out on the bolt side and bearing failure on the nut side, involving fiber kinking, matrix splitting, and delamination, resulting in lower strength compared to OHT specimens. The strength retention of carbon fiber/epoxy composites with open holes was 66%. Delamination initiation at the hole's edge caused a reduction in the stress concentration factor. Filling the hole with a bolt suppressed this relieving mechanism, leading to lower strength in BJT specimens compared to OHT specimens. Bolt joint efficiency was calculated as 15%. The reduction in strength in bolted joints was attributed to fiber-matrix splitting and delamination, aligning with Hart Smith's bolted joint efficiency diagram. These findings contribute to materials selection and structural reliability estimation for carbon fiber/epoxy composites. They highlight the behavior of open hole and bolt joint configurations under tensile loading, providing valuable insights for engineering applications.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Research on the tightening strategy of bolted flange for contact stiffness of joint surface

  • Zuo, Weiliang;Liu, Zhifeng;Zhao, Yongsheng;Niu, Nana;Zheng, Mingpo
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • During bolted flange assembly, the contact stiffness of some areas of the joint surface may be low due to the elastic interaction. In order to improve the contact stiffness at the lowest position of bolted flange, the correlation model between the initial bolt pre-tightening force and the contact stiffness of bolted flange is established in this paper. According to the stress distribution model of a single bolt, an assumption of uniform local contact stiffness of bolted flange is made. Moreover, the joint surface is divided into the compressive stress region and the elastic interaction region. Based on the fractal contact theory, the relationship model of contact stiffness and contact force of the joint surface is proposed. Considering the elastic interaction coefficient method, the correlation model of the initial bolt pre-tightening force and the contact stiffness of bolted flange is established. This model can be employed to reverse determine the tightening strategy of the bolt group according to working conditions. As a result, this provides a new idea for the digital design of tightening strategy of bolt group for contact stiffness of bolted flange. The tightening strategy of the bolted flange is optimized by using the correlation model of initial bolt pre-tightening force and the contact stiffness of bolted flange. After optimization, the average contact stiffness of the joint surface increased by 5%, and the minimum contact stiffness increased by 6%.