• Title/Summary/Keyword: boiling method

Search Result 524, Processing Time 0.027 seconds

A Study on the Heat Transfer of Carbon Steels in Quenching (탄소강의 담금질 열전달에 관한 연구)

  • 김경근;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.2
    • /
    • pp.20-26
    • /
    • 1995
  • The very rapid cooling problem from $820^{\circ}$C to $20^{\circ}$C on the surface of the steel by thermal conduction including the latent heat of phase transformation of steel and by transient boiling heat transfer of water are considered to principal problem in quenching. The transient boiling process of water at the surface of specimen during the quenching process were experimentally analyzed. Then the heat flux was numerically calculated by the numerical method of inverse heat condition problem. In this report, the simulation program to calculate the cooling curves for large rolls was made using the subcooled transient boiling curve as a boundary condition. By this simulation program, the cooling curves of rolls from D=50mm to D=200mm were calculated and the effects of agitation of circulation of water also investigated.

  • PDF

A Study on Boiling Heat Transfer from Circular Single Fin (단일 원형휜에서의 비등열전달에 관한 연구)

  • Seoh J. I.;Yim J. S;Lee J. H.;Park M. H.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.11 no.3
    • /
    • pp.18-30
    • /
    • 1982
  • The heat transfer process with boiling on a fin cannot be treated in a conventional manner of assuming a constant heat transfer coefficient. This report proposes a simplified method for determining fin performance. The heat transfer coefficients in boiling region is approximated by n ty power function of superheat. The results yield the temperature gradient as a function of superheat, fin width, and thermal conductivity of the fin. Computed results for water boiling on fin compare favorably with those obtained from a small-increment numerical solution.

  • PDF

Design and Evaluation of a Scalding Animal Model by the Boiling Water Method

  • Hua, Cheng;Lyu, Lele;Ryu, Hyun Seok;Park, So Young;Lim, Nam Kyu;Abueva, Celine;Chung, Phil-Sang
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.51-57
    • /
    • 2020
  • Background and Objectives For experiments on simulated burn, the preparation of an animal model is a very important step. The purpose of the current experiment is to design a simple and controllable method for the preparation of third-degree scald in a mouse model using the boiling water method. Materials and Methods A total of 18 Swiss mice were used. After the anesthetization, the mice were scalded by boiling water (100℃) using a mold with a 1 cm2 circle area on the dorsum at contact times of 3s, 5s, and 8s. After confirming that 8 seconds of scald can cause a third-degree scald, the skin samples were collected at day 2, 4, 6, 8, 10, and 12, and analyzed by histopathological examinations. The wound retraction index (WRI) was also measured. Results Third-degree scald involving full-thickness skin was observed in the 8-second scald group, while a 3-second scald caused a superficial second-degree scald and a 5-second scald caused a deep second-degree scald. After third-degree scald, the burn wound continued to contract until day 14. Conclusion The scalding model of mice can be successfully established by the boiling water method. This method is easy to operate, it has a low cost, and it can control the scald depth by controlling the scald time. This is adequate to study skin thermal injury in the future. The scald model established by this method can last for 14 days.

A Comparative QSPR Study of Alkanes with the Help of Computational Chemistry

  • Kumar, Srivastava Hemant
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.67-76
    • /
    • 2009
  • The development of a variety of methods like AM1, PM3, PM5 and DFT now allows the calculation of atomic and molecular properties with high precision as well as the treatment of large molecules with predictive power. In this paper, these methods have been used to calculate a number of quantum chemical descriptors (like Klopman atomic softness in terms of $E_n^{\ddag}\;and\;E_m^{\ddag}$, chemical hardness, global softness, electronegativity, chemical potential, electrophilicity index, heat of formation, total energy etc.) for 75 alkanes to predict their boiling point values. The 3D modeling, geometry optimization and semiempirical & DFT calculations of all the alkanes have been made with the help of CAChe software. The calculated quantum chemical descriptors have been correlated with observed boiling point by using multiple linear regression (MLR) analysis. The predicted values of boiling point are very close to the observed values. The values of correlation coefficient ($r^2$) and cross validation coefficient ($r_{cv}^2$) also indicates the generated QSPR models are valuable and the comparison of all the methods indicate that the DFT method is most reliable while the addition of Klopman atomic softness $E_n^{\ddag}$ in DFT method improves the result and provides best correlation.

Conjugate Analysis of Bubble Growth Involving Conduction in Solid (고체의 전도를 포함한 기포성장의 복합적 해석)

  • Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.265-273
    • /
    • 2003
  • Numerical analysis of bubble motion during nucleate boiling is performed by imposing a constant heat flux condition at the base of a heater which occurs in most of boiling experiments. The temporal and spatial variation of a solid surface temperature associated with the bubble growth and departure is investigated by solving a conjugate problem involving conduction in the solid. The vapor-liquid interface is tracked by a level set method which is modified to include the effects of phase change at the interface, contact angle at the wall and evaporative heat flux in a thin liquid micro-layer. Based on the numerical results, the bubble growth pattern and its interaction with the heating solid are discussed. Also, the effect of heating condition on the bubble growth under a micro-gravity condition is investigated.

Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

  • Gavilan-Moreno, Carlos J.;Espinosa-Paredes, Gilberto
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.434-447
    • /
    • 2016
  • The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

Simulation of Benzene-Toluene-Xylene Plant (BTX제조공정의 모사연구)

  • 정해동
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.121-130
    • /
    • 1995
  • This paper deals with modeling and simulation of an industrial benzene-toluene-xylene plant. Because the fractionation unit of benzene-toluene-xylene plant has a narrow range of boiling point and doesn't have any sidecut and side reboiler, we employed boiling point estimation method in the modeling and simulation of the plant. Soave-Redlich-Kwong equation was used in the computation of thermodynamical properties. We solved resulting nonlinear equations by using Newton-Raphson method which is known to show fast convergence. Results of simulation showed good agreement with actual plant operation data.

  • PDF

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 대한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1891-1896
    • /
    • 2003
  • The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.

  • PDF

Flow Boiling Heat Transfer Characteristics of Liquid Nitrogen in Plain and Wire Coil Inserted Tubes (평활관 및 와이어코일을 삽입한 열전달촉진관에서 액체질소의 흐름비등열전달 특성)

  • Hwang Jee-Sang;Yun Rin;Kim Yongchan;Chung Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.927-933
    • /
    • 2005
  • Boiling heat transfer characteristics of liquid nitrogen in a stainless steel plain tube and wire coil inserted tubes were investigated. The test tubes, which had an inner diameter of 10.6 m and a length of 1.65 m, were horizontally located. Five wire coils having different pitch and thickness were inserted into the plain tube. The pitches of the wire coils were 18.4, 27.6, and 36.8 m, and the thickness was 1.5, 2.0, and 2.5 mm respectively. Tests were conducted at a saturation temperature of $-191^{\circ}$, mass fluxes from 58 to 105 kg/$m^2s$, and heat fluxes from 22.5 to 32.7 kw/$m^2$. A direct heating method was used to apply heat to the test section. The boiling heat transfer coefficients of liquid nitrogen were represented as a function of vapor quality, which showed significant drop at the dryout vapor quality. The maximum heat transfer enhancement using the wire coil inserted tubes over the plain tube was $174\%$ for 'Wire 3' having a thickness of 2.5 mm and a pitch of 18.4 mm.

A CHARACTERISTICS-BASED IMPLICIT FINITE-DIFFERENCE SCHEME FOR THE ANALYSIS OF INSTABILITY IN WATER COOLED REACTORS

  • Dutta, Goutam;Doshi, Jagdeep B.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.477-488
    • /
    • 2008
  • The objective of the paper is to analyze the thermally induced density wave oscillations in water cooled boiling water reactors. A transient thermal hydraulic model is developed with a characteristics-based implicit finite-difference scheme to solve the nonlinear mass, momentum and energy conservation equations in a time-domain. A two-phase flow was simulated with a one-dimensional homogeneous equilibrium model. The model treats the boundary conditions naturally and takes into account the compressibility effect of the two-phase flow. The axial variation of the heat flux profile can also be handled with the model. Unlike the method of characteristics analysis, the present numerical model is computationally inexpensive in terms of time and works in a Eulerian coordinate system without the loss of accuracy. The model was validated against available benchmarks. The model was extended for the purpose of studying the flow-induced density wave oscillations in forced circulation and natural circulation boiling water reactors. Various parametric studies were undertaken to evaluate the model's performance under different operating conditions. Marginal stability boundaries were drawn for type-I and type-II instabilities in a dimensionless parameter space. The significance of adiabatic riser sections in different boiling reactors was analyzed in detail. The effect of the axial heat flux profile was also investigated for different boiling reactors.