• Title/Summary/Keyword: boiler system

Search Result 580, Processing Time 0.035 seconds

Development of the simulator for marine auxiliary boiler system (선박용 보조 보일러 시스템 시뮬레이터 개발)

  • Kim, Myoung-Hwan;So, Myung-Ok;Jung, Byung-Gun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.236-241
    • /
    • 2013
  • It requires long time and high cost for an apprentice engineer to reach the level of getting various experiences of engine space machinery and preparing for emergency situations. Therefore reducing the time and cost, several types of simulator that give the very similar surroundings to the ship engine room, relevant to STCW-95 are used for systematic education and training to get many experiences and good judgement in emergency. Since most simulators that are operated in Korea were imported from foreign countries, it is difficult to directly implant the amendments of STCW Convention and reflect International Maritime Organization (IMO) model courses. This study describe a development of marine auxiliary boiler simulator that makes the apprentice engineer easier to understand the relationship between equipments in steam system such as auxiliary boiler, exhaust gas boiler, and steam turbine.

A Study on the Dynamic Charateristics for Control of Gas-Fueled industrial Gas Boiler(I) (산業용 GAS 보일러의 動特性에 관한 硏究 (I))

  • 임종한;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.965-973
    • /
    • 1992
  • Boilers, which are considered to be one of the basic equipment in industry, consume large potion of nation's petroleum and their demand is growing everyday. In recent, the technology improvement in production of high efficiency boilers and their effective utilization is needed for design of boiler which steam condition is the large capacity of high temperature and high pressure. It is necessary that boiler control system be studied for high efficiency, high reliability and smooth operation. The control of drum pressure and water level particularly becomes an important task for greater accuracy with the avail ability of boiler operation. To achieve this aim, dynamic analysis of a boiler is accomplished by choosing a boiler as a model. Transfer function thus obtained is made a comparison of measurement with reckoning to technical design data. The results of comparison makes it possible to verify thermodynamical analysis on the dynamic behavior of the overall system.

Characterization of Microstructure and Thermal property of Ash Deposits on Fire-side Boiler Tube

  • Bang, Jung Won;Lee, Yoon-Joo;Shin, Dong-Geun;Kim, Younghee;Kim, Soo-Ryong;Baek, Chul-Seoung;Kwon, Woo-Teck
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.659-664
    • /
    • 2016
  • Ash deposition of heat exchange boiler, caused mainly by accumulation of particulate matter, reduces heat transfer of the boiler system. Heat and mass transfer through porous media such as ash deposits mainly depend on the microstructure of deposited ash. Therefore, in this study, we investigated microstructural and thermal properties of the ash deposited on the boiler tube. Samples for this research were obtained from the fuel economizer tube in an industrial waste incinerator. To characterize microstructures of the ash deposit samples, scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), inductively coupled plasma optical emission spectroscopy (ICP-OES), X-ray diffraction (XRD) and BET analysis were employed. The results revealed that it had a porous structure with small particles mostly of less than a few micrometers; the contents of Ca and S were 19.3, 22.6% and 18.5, 18.7%, respectively. Also, the results showed that it consisted mainly of anhydrite ($CaSO_4$) crystals. - The thermal conductivities of the ash deposit sample obtained from the economizer tube in industrial waste incinerator were measured to be 0.63 and 0.54 W/mK at $200^{\circ}C$, which were about 100 times less than the thermal conductivity (61.32 W/mK) of the boiler tube itself, indicating that ash deposition on the boiler tube was closely related to a decrease in boiler heat transfer.

Thermal Performance Analysis of Renewable Hybrid heat Supply System for Zero Carbon Green Home of Apartment (공동주택의 제로카본 그린홈을 위한 신재생에너지 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.451-456
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000 kacal/hr, a evacuated tubular solar collector 3.74 $m^2$ of aperture area at the $20^{\circ}$ install angle, a 0.3 $m^3$ hot water storage tank, a 0.15 $m^3$ hot water storage tank for space heating. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

  • PDF

A study on the robust control of the boiler-turbine (보일러 터빈 시스템의 견실성에 관한연구)

  • 이시곤;김은기;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.192-196
    • /
    • 1988
  • This paper presents a feasibility study related to the design of a linear multivariable compensator for a model of boiler-turbine system. The nonlinear dynamics are linearized at a operating condition. At the operating point an LQG/LTR compensator is designed. Simulations are included to illustrate the usefulness of this linear multivariable control law.

  • PDF

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

Leak Detection and Evaluation for Power Plant Boiler Tubes Using Acoustic Emission (음향방출을 이용한 보일러튜브 누설평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Boiler tubes in power plants are often leaked due to various material degradations including creep and thermal fatigue damage under severe operating conditions such as high temperature and high pressure over an extended period of time. To monitor and diagnose the tubes on site and in real time, the acoustic emission (AE) technology was applied. We developed an AE leak detection system, and used it to study the variation of AE signal from the on-site tubes in response to the changes in the boiler operation condition and to detect the locations of leakage based on it. Detection of leak was performed by acquiring and evaluating the signals in separate regimes of high and low frequency signal. As a result of these studies, we found that on-line monitoring and detection of leak location for boiler tubes is possible using the developed system. Thus, the system is expected to contribute to the safe operation of power plants, and prevent economic losses due to potential leak.

Energy and Exergy Analysis of a Steam Turbine Cogeneration System (증기터빈 열병합 시스템에 대한 에너지 및 엑서지 해석)

  • Cho, Sung-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1397-1405
    • /
    • 2009
  • In recent decades, exergy analysis has been holding spotlight as a useful tool in the design, assessment, optimization, and improvement of energy system. This paper presents the results of the energy and exergy analysis of a steam turbine cogeneration system for industrial complex using two efficiency concepts of conventional one and exergetic one. In order to obtain the destroyed exergy of each component, mathematical analysis is conducted by using exergy balance and the second law of thermodynamics, according as the parameters are changed, such as the ratio of returned process steam, process steam supplied, temperature and pressure of boiler and power. The computer program developed in this study can determine the efficiencies and exergy destroyed at each component of cogeneration system. As a result of this study, a component having the largest destroyed exergy was boiler. And closed and opened feedwater heater had the lowest one. The affects to the cogeneration system due to the variation of process steam flow and return rate of condensed water is shown that the total electric power efficiency(${\eta}_E$) is decreased as increasing the return rate of condensed water under constant process steam flow. As the boiler pressure is increased for the more production of electricity, the efficiency of cogeneration system was decreased.

  • PDF

Flame Stability and Emission Characteristics of Can-type Burner for Condensing Gas Boiler (응축 가스보일러용 원통형 연소기의 화염 안정성 및 배기 특성)

  • 이석희;정영식;금성민;이창언
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.237-242
    • /
    • 2000
  • This study was carried out to optimize burner of the condensing gas boiler which can save energy by utilizing the latent heat of combustion gas and reduce pollutants emission. Three reasonable distances between burner and heat exchanger were decided through the experiments of model flat burner. The optimum burner geometry was determined from flame stability, pollutant emission characteristics and applicability to practical boiler system. The boiler designed by this research reaches turn-down ratio 5:1 in the domain of equivalence ratio 0.68∼0.85 and thermal efficiency of 98%. Emission of NOx and CO concentration was under 35ppm and 104ppm.

  • PDF