• 제목/요약/키워드: boiler scale

검색결과 106건 처리시간 0.026초

Temperature Control of Ultrasupercritical Once-through Boiler-turbine System Using Multi-input Multi-output Dynamic Matrix Control

  • Moon, Un-Chul;Kim, Woo-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.423-430
    • /
    • 2011
  • Multi-input multi-output (MIMO) dynamic matrix control (DMC) technique is applied to control steam temperatures in a large-scale ultrasupercritical once-through boiler-turbine system. Specifically, four output variables (i.e., outlet temperatures of platen superheater, finish superheater, primary reheater, and finish reheater) are controlled using four input variables (i.e., two spray valves, bypass valve, and damper). The step-response matrix for the MIMO DMC is constructed using the four input and the four output variables. Online optimization is performed for the MIMO DMC using the model predictive control technique. The MIMO DMC controller is implemented in a full-scope power plant simulator with satisfactory performance.

보일러내 열 전달 효율 개선을 위한 초음파발신기 개발 (The development of ultrasonic transmitter to enhance the efficiency of heat transfer rate in boiler)

  • 허필우;이양래;임의수;고광식
    • 센서학회지
    • /
    • 제12권2호
    • /
    • pp.95-101
    • /
    • 2003
  • 보일러나 열교환기의 관 벽에 부착되는 스케일 방지용으로 설계된 초음파 발신기는 전기적 에너지를 초음파로 변환시켜주는 자왜소자와 발생된 초음파를 부하매질에 전달하는 도파봉으로 구성된다. 본 논문에서는 진동자로 사용되는 자왜소자의 형상설계와 진동자에서 발생된 초음파를 증폭시켜 부하매질로 전달하기 위한 몇 가지 형태의 도파봉에 대해 이론해석을 수행하여 필요한 사양을 도출하였다. 최종적인 도파봉의 길이는 음압 측정을 통해 선정하였다. 마지막으로 제작된 초음파발신기를 사용하여 보일러와 유사한 조건에서 스케일 방지효과를 확인하였다.

5톤/일 규모의 연소보일러에서 Bio-drying 고형연료의 연소특성 연구 (A Study on Combustion Characteristics of the Bio-drying SRF in 5 Ton/day Scale Combustion Boiler)

  • 김동주;윤영식;정법묵;박영수;서용칠;이병선
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.600-605
    • /
    • 2018
  • In this study, the combustion characteristics were investigated based on the biodrying solid recovered fuel (SRF) in a 5 Ton/day scale combustion boiler. The composition of the combustion gas containing the biodrying SRF was analyzed, the particulate matter, and its HCl content was determined with the air pollutant process test method. Mass balance, carbon balance, and combustion efficiency were calculated according to the equivalence ratio (ER) method; the energy recovery efficiency of the combustion boiler was also analyzed. The overall combustion efficiency of the biodrying SRF was 97.3 % and the energy recovery efficiency was 80.2%.

코팅 세라믹볼의 방청효과에 관한 연구 (A Study on Scale Busting and Preventing Effect of Coating Ceramic Ball)

  • 하윤식;김학용;김수진;백우현
    • 한국환경과학회지
    • /
    • 제11권10호
    • /
    • pp.1117-1123
    • /
    • 2002
  • Coating ceramic balls activate water molecular in water as radiate far-infrared radiation of high efficiency, and then prevent formation of scale and corrosion of pipe. Therefore, but only keep away drop of heat exchange efficiency of boiler, not also remove formed scale. As a result, pipe of boiler has clean and has form thin protection film in inner of pipe. Also, the water treated by rust preventing system using the ceramic balls, that is harmless, tasteless, odorless, and non-toxicity in the human body, and it can use drinking water. This rust preventing system can save energy and protect environment.

Retrofit of Analog Boiler Control Systems with Digital Control Systems in a Thermal Power Plant

  • Park, Doo-Yong;Byun, Seung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1304-1308
    • /
    • 2005
  • This paper presents the case that the existing analog control systems were retrofitted with digital DCS(Distributed Control System)s for boiler unit in thermal power plant. Replacement of existing worn-out or obsolete analog control systems has been considered. Replacement of existing analog control systems with another analog control systems has lots of difficulties in maintaining the systems due to being out of stock. Due to those difficulties, existing analog control systems have been retrofitted with digital DCSs in many industrial sites. KEPRI(Korea Electric Power Research Institute) accomplished the project that retrofitted analog control systems with the developed DCSs for boiler unit in middle-scale coal-fired thermal power plant. The benefits of an upgrade to digital control include a increase of reliability due to system redundancy, ease of modifying the control logic and the parameters of function block, ease of maintenance due to available spare parts, improvement of information display, ease of modifying MMI(Man Machine Interface) displays, a increase in system availability, and improvement of control performance. This paper describes how to use the parameters of existing analog controllers, the implementation of digital PID controller, control system configuration for boiler unit in thermal power plant, some boiler control loops, control result during commissioning, and the comparison of boiler characteristic test data after retrofitting with the existing test data.

  • PDF

반응표면법을 이용한 석탄 화력 보일러 연소특성 예측 (Prediction of the Combustion Performance in the Coal-fired Boiler using Response Surface Method)

  • 신성우;김신우;이의주
    • 한국안전학회지
    • /
    • 제32권1호
    • /
    • pp.27-32
    • /
    • 2017
  • The experimental design methodology was applied in the real scale coal-fired boiler to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was provided with the numerical simulation of the coal-fired boiler. The three independent variables, high heating value of coal (HHV), overall stoichiometry excess air ratio (OST), and burner-side stoichiometry excess air ratio (BST), were set to characterize the cross section averaged NOx concentration and temperature distribution. The maximum NOx concentration was predicted accurately and mainly controlled by BST in the boiler. The parabola function was assumed for the zone averaged peak temperature distribution, and the prediction was in a fairly good agreement with the experiments except downstream. Also, the location of the peak temperature was compared with that of maximum NOx, which implies that thermal NOx formation is the main mechanism in the coal-fired boiler. These results promise the wide use of statistical models for the fast prediction and safety assessment.

멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구 (A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners)

  • 양동진;최신영;양원
    • 한국연소학회지
    • /
    • 제15권1호
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.