• 제목/요약/키워드: body-voltage

검색결과 477건 처리시간 0.025초

Experimental and numerical investigation of the energy harvesting flexible flag in the wake of a bluff body

  • Latif, Usman;Abdullah, Chaudary;Uddin, Emad;Younis, M. Yamin;Sajid, Muhamad;Shah, Samiur Rehman;Mubasha, Aamir
    • Wind and Structures
    • /
    • 제26권5호
    • /
    • pp.279-292
    • /
    • 2018
  • Inspired by the energy harvesting eel, a flexible flag behind a D-shape cylinder in a uniform viscous flow was simulated by using the immersed boundary method (IBM) along with low-speed wind tunnel experimentation. The flag in the wake of the cylinder was strongly influenced by the vortices shed from the upstream cylinder under the vortex-vortex and vortex-body interactions. Geometric and flow parameters were optimized for the flexible flag subjected to passive flapping. The influence of length and bending coefficient of the flexible flag, the diameters (D) of the cylinder and the streamwise spacing between the cylinder and the flag, on the energy generation was examined. Constructive and destructive vortex interaction modes, unidirectional and bidirectional bending and the different flapping frequency were found which explained the variations in the energy of the downstream flag. Voltage output and flapping behavior of the flag were also observed experimentally to find a more direct relationship between the bending of the flag and its power generation.

Bone-like Apatite Formation on Ti-6Al-4V in Solution Containing Mn, Mg, and Si Ions after Plasma Electrolytic Oxidation in the SBF Solution

  • Lim, Sang-Gyu;Choe, Han Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.157-157
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. They can directly connect to bone. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electrochemical oxidation is a novel method to form ceramic coatings on light metals such as titanium and its alloys. This is an excellent reproducibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magnesium (Mg) has a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth and development. Manganese influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Insufficience of Mn in human body is probably contributing cause of osteoporosis. Pre-studies have shown that Mg plays very important roles in essential for normal growth and metabolism of skeletal tissue in vertebrates and can be detected as minor constituents in teeth and bone. The objective of this work was to study nucleation and growth of bone-like apatite formation on Ti-6Al-4V in solution containing Mn, Mg, and Si ions after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages. And bone-like apatite formation was carried out in SBF solution for 1, 3, 5, and 7 days. The morphologies of PEO-treated Ti-6Al-4V alloy in containing Mn, Mg, and Si ions were examined by FE-SEM, EDS, and XRD.

  • PDF

Bone-like Apatite Morphology on Si-Zn-Mn-hydroxyapatite Coating on Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Park, Min-Gyu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.158-158
    • /
    • 2017
  • Titanium and its alloys have been used in the field dental and orthopedic implants because of their excellent mechanical properties and biocompatibility. Despite these attractive properties, their passive films were somewhat bioinert in nature so that sufficient adhesion of bone cells to implant surface was delayed after surgical treatment. Recently, plasma electrolyte oxidation (PEO) of titanium metal has attracted a great deal of attention is a comparatively convenient and effective technique and good adhesion to substrates and it enhances wear and corrosion resistances and produces thick, hard, and strong oxide coatings. Silicon(Si), Zinc(Zn), and Manganese(Mn) have a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. And, Zn has been shown to be responsible for variations in body weight, bone length and bone biomechanical properties. Also, Mn influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. The objective of this work was research on bone-like apatite morphology on Si-Zn-Mn-hydroxyapatite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation. Anodized alloys were prepared at 280V voltage in the solution containing Si, Zn, and Mn ions. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, and EDS.

  • PDF

Electrochemical Behavior of Plasma Electrolytic Oxidized Films Formed in Solution Containing Mn, Mg and Si Ions

  • Lim, Sang-Gyu;Choe, Han Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.80-80
    • /
    • 2017
  • Titanium and its alloys that have a good biocompatibility, corrosion resistance, and mechanical properties such as hardness and wear resistance are widely used in dental and orthopedic implant applications. However, they do not form a chemical bond with bone tissue. Plasma electrolytic oxidation (PEO) that combines the high voltage spark and electro-chemical oxidation is a novel method to form ceramic coatings on light metals such as tita-nium and its alloys. This is an excellent re-producibility and economical, because the size and shape control of the nano-structure is relatively easy. Silicon (Si), manganese (Mn), and magne-sium (Mg) have a useful to bone. Particularly, Si has been found to be essential for normal bone, cartilage growth, and development. Mn influences regulation of bone remodeling be-cause its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. Pre-studies have shown that Mg plays very im-portant roles in essential for normal growth and metabolism of skeletal tissue in verte-brates and can be detected as minor constitu-ents in teeth and bone. In this study, Electrochemical behavior of plasma electrolytic oxidized films formed in solution containing Mn, Mg and Si ions were researched using various experimental in-struments. A series of Si-Mn-Mg coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 5 and 10%. The potentiodynamic polarization and AC impedance tests for corrosion behav-iors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV. Also, AC impedance was performed at frequencies anging from 10MHz to 100kHz for corrosion resistance.

  • PDF

인체 감지 제어 기능을 갖는 UV LED Bar의 최적 설계 (The UV LED Bar Optimal Design with Human Detection and Control Function)

  • 김창선;이재학;고영진
    • 한국전자통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.1219-1226
    • /
    • 2017
  • 본 논문에서는 다용도로 사용 가능한 UV LED 바의 최적설계를 하였다. UV LED는 자외선을 방출하기 때문에 사용목적상 일정하게 자외선을 방출하는 것이 중요하다. 일정한 자외선이 방출되기 위해서는 동작 가능 입력 전압 범위 내에서 정전류원으로 구동되어야 하고 자외선 활용 특성 상 자외선 방출 유지 시간이 길기 때문에 방열이 특히 중요하다. 따라서 소비전력이 최소화 되도록 설계해야 한다. 또한 인체 보호가 필수적이기 때문에 거리 감지 센서와 블루투스를 이용해 인체 감지 여부에 따라 동작할 수 있게 알고리즘을 구성하였다. 자외선 UVA를 방출하기 위해 365nm UV LED 3개가 직렬로 사용되었으며 입력 전압 12V와 정전류 500mA에서 동작하며 효율은 87.5%, 소비전력은 6.006W이다. 그리고 자외선 조사량은 루트론 계측기로 측정하였을 경우 10cm 거리에서 $5.35mW/cm^2$으로 측정 되었다.

Dead-Time 적응제어 기능과 Power Switching 기능을 갖는 DC-DC 부스트 변환기 (DC-DC Boost Converter with Dead-Time Adaptive Control and Power Switching)

  • 이주영;양민재;김두회;윤은정;유종근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.361-364
    • /
    • 2013
  • 기존의 DC-DC 부스트 변환기에서 사용되는 non-overlapping gate driver는 dead-time이 고정되어 있기 때문에 body-diode conduction loss 또는 charge-sharing loss가 발생하는 문제점을 가지고 있다. 이러한 손실을 줄이기 위해 사용된 기존의 적응제어 방식의 경우는 CCM 동작 시 전력트랜지스터가 동시에 on이 되는 구간이 발생하여 시스템 효율이 감소하는 문제점이 있다. 따라서 본 논문 에서는 이러한 문제점을 해결할 dead-time 적응제어 기능과 power switching 기능을 갖는 DC-DC 부스트 변환기를 설계 하였다. CMOS 0.35um 공정을 사용하였고, 2.5V 입력으로 3.3V의 출력전압을 얻으며, 스위칭 주파수는 500kHz 이다. 부하전류 150mA일 때 가장 높은 95.3%의 효율을 얻었다. 설계된 회로의 칩 면적은 $1720um{\times}1280um$이다.

  • PDF

Foreign Body Ingestion in Children: Should Button Batteries in the Stomach Be Urgently Removed?

  • Lee, Jun Hee;Lee, Jee Hoo;Shim, Jung Ok;Lee, Jung Hwa;Eun, Baik-Lin;Yoo, Kee Hwan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제19권1호
    • /
    • pp.20-28
    • /
    • 2016
  • Purpose: Foreign body (FB) ingestion is common in children, and button battery (BB) ingestion has been increasing in recent years. This study was to identify factors related to outcomes of FB ingestion, particularly BBs in the stomach. We evaluated whether the current recommendations are appropriate and aimed to suggest indications for endoscopic removal of BB in the stomach in young children. Methods: We investigated patient age, shape, size, location of FBs, spontaneous passage time and resulting complications among 76 children. We observed types, size, location of BB and outcomes, and analyzed their associations with complications. Results: Coins and BB were the two most common FBs. Their shapes and sizes were not associated with the spontaneous passage time. Size, spontaneous passage time, and age were also not associated with any specific complications. For BB ingestion, all 5 cases with lithium batteries (${\geq}1.5cm$, 3 V) presented moderate to major complications in the esophagus and stomach without any symptoms, even when the batteries were in the stomach and beyond the duodenum, while no complications were noted in 7 cases with alkaline batteries (<1.5 cm, 1.5 V) (p=0.001). All endoscopies were conducted within 24 hours after ingestion. Conclusion: The type and voltage of the battery should be considered when determining whether endoscopy is required to remove a BB in the stomach. For lithium battery ingestion in young children, urgent endoscopic removal might be important in order to prevent complications, even if the child is asymptomatic and the battery is smaller than 2 cm.

차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구 (A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body)

  • 이경민;김재성;이보영
    • Journal of Welding and Joining
    • /
    • 제30권3호
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

전원전압 0.5V에서 동작하는 심전도계 (Design of 0.5V Electro-cardiography)

  • 성민혁;김재덕;최성열;김영석
    • 한국정보통신학회논문지
    • /
    • 제20권7호
    • /
    • pp.1303-1310
    • /
    • 2016
  • 본 논문에서는 전원전압 0.5V의 심전도 검사기(ECG)를 설계하고 칩으로 제작하여 성능을 확인하였다. ECG는 계측 증폭기, 6차 gm-C 저역 통과 필터 그리고 가변이득증폭기로 구성되어 있다. 계측증폭기는 이득이 34.8dB, 6차 gm-C 저역 통과 필터는 400Hz의 차단주파수를 가지게 설계되었다. 저역 통과 필터의 연산 트랜스컨덕턴스 증폭기는 저전압 동작을 위하여 차동 바디 입력 방법을 사용하였다. 가변이득증폭기의 이득 범위는 6.1~26.4dB로 설계되었다. 설계된 심전도 검사기는 TSMC $0.18{\mu}m$ CMOS 공정을 이용하여 $858{\mu}m{\times}580{\mu}m$의 칩크기로 제작되었다. 측정은 입력 신호를 포화시키지 않도록 외부 연결 저항을 조절하여 이득을 낮춘 상태에서 진행한바, 중간 주파수 이득 28.7dB, 대역폭은 0.5 - 630Hz을 얻었으며, 전원전압 0.5V에서 동작함을 확인하였다.

배추좀나방과 파밤나방의 pyrethroids약제에 대한 감수성 및 전기적 신경 반응 비교 (Toxicological and Electrophysiological Activities of Pyrethroids between Larvae of Diamondback Moth, plutella xylostella and Beet Armyworm, Spodoptera exigua)

  • 함선희;안희근;양정오;윤창만;김길하
    • 농약과학회지
    • /
    • 제13권3호
    • /
    • pp.197-202
    • /
    • 2009
  • 본 실험은 배추좀나방과 파밤나방 유충에 처리방법에 따른 살충 효과를 토대로 신경계를 작용점으로 하는 pyrethroid계 약제를 이용하여 신경반응을 비교해 보았다. 배추좀나방과 파밤나방 모두 충체분무처리시 세 약제에서 50%이하의 살충률을 나타내었다. 엽면침지시 배추좀나방은 50ppm에서 deltamethrin은 100%, fenvalerate는 80%의 살충률을 보였으며 permethrin은 63.3%로 나타났다. 하지만 파밤나방은 모든 농도에서 control과 비슷한 낮은 활성을 보여주었다. 세 약제가 배추좀나방과 파밤나방 유충 신경에 어떤 영향을 미치는지 알아보기 위하여 전기생리반응을 통해 신경감수성을 살펴본 결과, 배추좀나방은 deltamethrin은 $10^{-7}M$, fenvalerate는 $10^{-5}M$, permethrin은 $10^{-3}M$에서 높은 반응을 보였으며, 파밤나방은 이 세 약제에서 모두 둔감한 반응결과를 얻었다.