• Title/Summary/Keyword: body position

Search Result 1,474, Processing Time 0.025 seconds

Improving Accuracy of Measurement of Rigid Body Motion by Using Transfer Matrix (전달 행렬을 이용한 강체 운동 측정의 정확도 개선)

  • 고강호;국형석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.253-259
    • /
    • 2002
  • The rigid body characteristics (value of mass, Position of center of mass, moments and products of inertia) of mechanical systems can be identified from FRF data or vibration spectra of rigid body motion. Therefore the accuracy of rigid body characteristics is connected directly with the accuracy of measured data for rigid body motions. In this paper, a method of improving accuracy of measurement of rigid body motion is presented. Applying rigid body theory, ail translational and rotational displacements at a tentative point on the rigid body are calculated using the measured translational displacements for several points and transfer matrix. Then the estimated displacements for the identical points are calculated using the 6 displacements of the tentative Point and transfer matrix. By using correlation coefficient between measured and estimated displacements, we can detect the existence of errors that are contained in a certain measured displacement. Consequently, the improved rigid body motion with respect to a tentative point can be obtained by eliminating the contaminated data.

  • PDF

A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation (블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법)

  • Ryu, Hang-Ki;Woo, Kyung-Hang;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

Position Detection of a Capsule-type Endoscope by Magnetic Field Sensors (자계 센서를 이용한 캡슐형 내시경의 위치 측정)

  • Park, Joon-Byung;Kang, Heon;Hong, Yeh-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.66-71
    • /
    • 2007
  • Development of a locomotive mechanism for the capsule type endoscopes will largely enhance their ability to diagnose disease of digestive organs. As a part of it, there should be provided a detection device of their position in human organs for the purpose of observation and motion control. In this paper, a permanent magnet outside human body was employed to project magnetic field on a capsule type endoscope, while its position dependent flux density was measured by three hall-effect sensors which were orthogonally installed inside the capsule. In order to detect the 2-D position data of the capsule with three hall-effect sensors including the roll, pitch and yaw angle, the permanent magnet was extra translated during the measurement. In this way, the 2-D coordinates and three rotation angles of a capsule endoscope on the same motion plane with the permanent magnet could be detected. The working principle and performance test results of the capsule position detection device were introduced in this paper showing that they could be also applied to 6-DOF position detection.

A Study on the Errors in the Free-Gyro Positioning and Directional System (자유자이로 위치 및 방위시스템의 오차에 관한 연구)

  • Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.329-335
    • /
    • 2013
  • This paper is to develop the position error equations including the attitude errors, the errors of nadir and ship's heading, and the errors of ship's position in the free-gyro positioning and directional system. In doing so, the determination of ship's position by two free gyro vectors was discussed and the algorithmic design of the free-gyro positioning and directional system was introduced briefly. Next, the errors of transformation matrices of the gyro and body frames, i.e. attitude errors, were examined and the attitude equations were also derived. The perturbations of the errors of the nadir angle including ship's heading were investigated in each stage from the sensor of rate of motion of the spin axis to the nadir angle obtained. Finally, the perturbation error equations of ship's position used the nadir angles were derived in the form of a linear error model and the concept of FDOP was also suggested by using covariance of position error.

Detecting the screw-assembly state of a valve-body using the AR method (AR 방식을 이용한 밸브바디의 나사 조립 상태 검지)

  • Kang, Moon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • In this study, an augmented reality (AR) app that detects the screw-assembly state of a car valve-body and assists the assembly work is developed and the effectiveness of the app is shown through testing. The app creates the contents indicating the screw-assembly position and order, and the screw-assembly state. Then, the contents are registrated onto the valve-body image on a smart-phone screen to be shown to the worker during assembly. To this end, the features are extracted from the 2D image of the valve-body and the location of the valve-body is tracked. By extracting the areas where the screws are to be assembled, and periodically determining the luminance of these areas, it is checked whether the screws are assembled in order at the predetermined position of the valve-body. When an error is detected during assembly, a warning sound is notified to the worker, and the worker can check the assembly state on the smart-phone screen and handle the error, immediately. Study results found that it takes about 65 ms to detect the assembly state of the five screws, and the assembly state is detected without error for 1 hour.

Analysis of Muscle Contribution on Snatch Motion (역도 인상동작에 대한 근력의 기여도 분석)

  • Kang, Chan-Keum;Park, Eun-Hye
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.265-276
    • /
    • 2003
  • The objective of this research is to provide basic data for improving athletic performances, suggesting methods that can be utilized at games and coaching movements in the snatch, by analyzing the level of contribution of muscles to the movements of the snatch lift through three-dimensional imaging and EMG analysis between skilled and unskilled lifters. To this end, three high school students (the skilled group), three middle school student (the unskilled group) were selected; two digital video cameras and electromyography were used. The muscles measured by an EMG include gastrocnemius muscle, biceps femoris muscle, erector spinae, latissimus dorsi muscle, trapezius muscle, and brachioradialis. Based on the Ariel Performance Analysis System (APAS) program, the results of the analysis are summarized as follows. 1. In performing snatch pulls, the skilled lifters were found to simultaneously move the weight centers of the body and the barbell close to vertical, close to the shoulders in the pulling portion; in snatching and grabbing the barbell from a sited position, it was observed that the shorter the time for adjusting to change in the height of the barbell by using rotational inertia, the better it is to perform the movements. 2. The skilled lifters were observed to perform stable and efficient movements in grabbing the bar in a sited position, by moving the barbell and weight center of the body close to vertical and moving the shoulder joint under the bar fast. 3. The results of the EMG analysis of the entire movements from the snatching portion to the portion of grabbing the bar in a sited position show that when the skilled lifters lifted the barbell vertically during the pulling portion, their shoulder joints were extended to put more weight on biceps femoris muscle and brachioradialis; and in snatching and grabbing the bar from a sited position, it was found desirable to increase the myoelectrical activity of erector spinae in order to achieve a balance in the movements of the hip joint between font and rear, as the weight centers of the body and the barbell move higher. On the other hand, the unskilled lifters were found that in response to change in posture, they increase their muscular strength inefficiently in performing the movements throughout the entire lifting process.

Aerodynamic Aspects of Dispersal Take-off Behavior Among the Phytoseiid Mites, Phytoseiulus persimilis, Neoseiulus fallacis and N. californicus (포식성 이리응애류, Phytoseiulus persimilis, Neoseiuzus fallacis와 N. californicus의 공중이동 이륙행동에 관한 공기역학적 연구)

  • Jung, Chul-Eui
    • Korean journal of applied entomology
    • /
    • v.40 no.2
    • /
    • pp.125-129
    • /
    • 2001
  • Some wingless species have evolved take-off behaviors that enable them to become airborne. We examined aerodynamic attributes of dispersal relative to the body size and standing vs. walking postures for three phytoseiids that were suspected to have different take-off behaviors and dispersal abilities, Phytoseiulus persimilis Athias-Henriot, Neoseiulus fallacis (Carman) and N. californicus (McGregor). The average vertical profile of Pp in the walking position was significantly higher than those of Nf and Nc when in walking position. The body height of Nf in the standing posture was significantly greater than the body height of Pp when in the walking position. Cross-section areas also showed similar patterns of difference. Nf in the standing posture would have more than twice the drag force than in walking posture because of more fluid momentum in the wind boundary layer However, Pp in the walking position would have similar drag to Nf in the standing posture because of a higher vertical profile and larger size. Thus we add the scientific evidence of presence and absence of take-off behavior of some phytoseiid mites and evolutionary aspects of aerial dispersal are further discussed.

  • PDF

Lumbar Spine Kinematics during Anterior and Posterior Pelvic Tilting in Supine and Prone Positions

  • Park, So-Hyun;Yuk, Goon-Chang;Ahn, Sang-Ho;Lee, Dong-Gyu;Choi, Jin-Ho;Oh, Hyun-Ju;Park, Kwan-Yong
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.9-14
    • /
    • 2011
  • Purpose: The pelvic tilting exercise is a well recognized rehabilitation maneuver. However, little information is available on the changes of lumbar segmental motion during pelvic tilting. This study was conducted to measure the kinematics of the pelvic tilting exercise on the supine and prone positions via fluoroscopy. Methods: A total of 10 female subjects were enrolled. During anterior, neutral, and posterior pelvic tilting, radiographs were taken in each exercise via fluoroscopy (ARCADIS Orbic, Siemens, USA). Images were sent to the picture archiving communication system (PACS), and the digitized images were analyzed using LabVIEW software (National Instruments, USA). Lumbosacral lordosis and the intervertebral body angle, intervertebral disc angle, and intervertebral displacement were analyzed. Results: The results of lumbar kinematic analysis during three tilting postures in the supine and prone positions demonstrated that lumbosacral lordosis and the intervertebral body angle and intervertebral disc angle were significantly higher when the pelvis was tilted anteriorly (p>0.05). However, there was no significant difference between anterior and neutral tilting in the intervertebral disc angle at the L3/4 level in the prone position (p>0.05), and there was no significant difference among tilting positions in intervertebral body displacement in the prone position (p>0.05). Conclusion: This study provides scientific evidence about the pelvic tilting exercise in lumbosacral segmental motion. Depending on the pelvic tilting exercise, kinematic changes were demonstrated in both positions, especially in the supine position. It is suggested that the supine position is effective for mobility, but it should be used carefully for the LBP (Low back pain) patient with hypermobility.

A Landmark Based Localization System using a Kinect Sensor (키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템)

  • Park, Kwiwoo;Chae, JeongGeun;Moon, Sang-Ho;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).

Effects of the Selection of Deformation-related Variables on Accuracy in Relative Position Estimation via Time-varying Segment-to-Joint Vectors (시변 분절-관절 벡터를 통한 상대위치 추정시 변형관련 변수의 선정이 추정 정확도에 미치는 영향)

  • Lee, Chang June;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.156-162
    • /
    • 2022
  • This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.