• Title/Summary/Keyword: body motion

Search Result 2,119, Processing Time 0.028 seconds

The Motility of Esophagus in Acute Hemorrhage (급성실혈시의 식도운동)

  • Park, Soon-Il;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.6 no.2
    • /
    • pp.39-48
    • /
    • 1972
  • Two polyethylene tubes were inserted into the esophagus of anesthetized rabbit in order to record the fluctuation of the intraluminal pressure through the orifices located near the tips of the tubes. The orifice of the first tube was 10 cm apart from the incisor of the rabbit and the orifice of the second tube was 5 cm below that of the first one. The tubes were filled with saline solution running at various rates ranging from 1.5 ml/min. to 4.2 ml/min. The tubes were connected to the pressure transducers and the electrical signals were recorded by the physiograph. When the peristaltic wave approached to the orifice a rise in the pressure was recorded, returning to the base line when the portion of the orifice was quiescent. The frequency of the peristaltic motion and the velocity of the wave were studied in connection with the flow rate of saline solution through the tubes and in the case of massive acute hemorrhage. The results obtained were as follows: 1. There was reflux of fluid induced during the procedure of the experiment. This outwrad flow through the pharynx seemed to elicite swallowing reflexes. Accordingly, the frequency of peristalsis of the esophagus was largely dependent on the flow rate of the fluid through the inserted tubes. By the flow rate of 1.5 ml/min., 2.5 ml/min., or 4.2 ml/min., the frequencies of the peristalsis were revealed to be $8.6{\pm}3.6/10min.,\;14.5{\pm}4.8/10min.\;or\;21.1{\pm}6.3/10min.,$ respectively. The velocity of peristalsis also coincided with the enhanced motility of the esophagus, showing $6.6{\pm}1.5\;cm/sec.,\;8.9{\pm}3.9\;cm/sec.,\;or\;12.4{\pm}4.6\;cm/sec.,$ respectively. 2. By acute hemorrhage, amounting to 2% of the body weight, the frequency of the peristalsis increased to twofold of the control and the propagation velocity also increased by 52 percent. 3. Retransfusion of the shed blood resulted in divergent responses. In some cases there were noticable ameliorations of the effects brought by acute hemorrhage, and in the others there were still increasing tendenies of the motility after the transfusion. 4. Some speculation was made about the possibility of a kind of relationship between the irreversibility of the hemorrhagic shock and the absence of responses by transfusion. 5. The peristalsis persisted even after complete disconnection at the midportion of the esophagus, reaffirming the view of a central regulation of the spatiotemporally coordinated motility, peristalsis.

  • PDF

Design Optimization for Kinematic Characteristics of Automotive Suspension considering Constraints (구속조건을 고려한 자동차 현가장치 기구특성의 최적설계)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.306-311
    • /
    • 2017
  • This paper deals with the design optimization of the kinematic characteristics of an automotive suspension system. The kinematic characteristics of the suspension determine the attitude of the wheels, such as the toe and camber, which not only relates to tire wear during driving, but also greatly affects the control of the vehicle and its stability, which corresponds to the motion performance of the vehicle. Therefore, it is very important to determine the characteristics of the suspension mechanism at the initial stage of the design. In this study, a displacement analysis is performed to determine the kinematic properties of the suspension for the McPherson strut suspension. For this purpose, a set of constraint equations for the joints constituting the suspension mechanism was established and a program was developed to solve them. We also used ADS, a design optimization program, to obtain the desired kinematic characteristics of the suspension. As the design variables for optimization, we used the coordinates of the hard points, which are the points of attachment of the suspension to the vehicle body, and are defined as the summation of the toe-in for the up and down movement of the wheel as the objective function. As the constraint functions, the maximum camber angle and minimum roll center height, which are design requirements, are considered. As a result of this study, it was possible to determine the optimal locations of the hard points that satisfy both constraint functions and minimize the change of the toe-in.

The Comparison of Seakeeping Performance Analysis Methods for a High Speed Catamaran (Strip and 3-D Panel Method) (초고속 쌍동선에 대한 내항성능 해석 방법 비교 (스트립 방법과 3-D Panel 방법))

  • Lee, Ho-Young;Song, Ki-Jong;Yum, Deuk-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.127-138
    • /
    • 1996
  • The strip method, unified theory and 3-D panel method are commonly used methods for the seakeeping analysis of high-speed vessels. The strip method which is basically 2-dimensional method is known to give incorrect hydrodynamic coefficients and motion responses for the cases of high speed and low frequency region. And the unified theory which uses two dimensional approach in inner domain and slender body theory in outer domain is very complicate in computational modelling. Though the 3-D panel method requires comparatively long computation time, it is believed that the method gives good results without any limitation in ship speed and range of frequency for computation. In the 3-D panel method the source singularity representing translating and pulsating Green function is used and Hoff's method is adopted for the numerical calculation of the Green function. The computation time can be reduced by using the symmetry relationship with respect to longitudinal axis. In this paper the strip method and the 3-D panel method are compared for the seakeeping analysis of a high-speed catamaran. The Compared items are the hydrodynamic coefficients, wave exciting forces, frequency response functions and short-term responses in irregular waves.

  • PDF

Development of Ergonomic Backrest for Office Chairs

  • Kim, Chang Yong;Song, Gyung Yong;Jang, Yeon Sik;Ko, Hyo Eun;Kim, Hee Dong;Park, Gemus;Hwang, Jung Bo;Jung, Hwa Shik
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.151-165
    • /
    • 2015
  • Objective: This study aims to develop and scientifically investigate the efficacy of the Spine S-curve Reactive Backrest that responds to the spine curvature of the user when seated, and maintains and enhances the natural S-curve of the lower back, thereby helping to relieve fatigue, correct posture and prevent spine deformities. Background: The focus of current development, design guidelines and/or standards for office chairs is mainly placed on the chair's dimensions, incline angle, adjusting features and lumbar support. Research and development was called for developing a chair backrest that maintains and improves the S-curve of the full spine. Method: The Spine S-curve Reactive Backrest was ergonomically designed to maintain correct posture and enhance user comfort. When leaned on, the backrest responds to the user's spine line and the whole lower back sits closely against the backrest, thereby aligning the user's lower back and backrest as one to maintain and improve the natural S-curve formation of the spine. In order to evaluate the efficacy of the newly designed chair (new design) and the comparison target (chair), five male college students of standard body type with normal spine curvature were selected as test subjects, and a motion analyzer and electromyography were utilized to measure S-curve and erector spinae muscle activity when seated. Results: The spine S-curve was better maintained and improved when sitting in the new design than in the comparison chair. Particularly notable was the greater displacement gap of the thoracic spine than the cervical spine, and also that of the lumbar more than the thoracic spine, with the increase of the backrest tilting angle. Furthermore, the electromyogram results showed the new design caused a lower fatigue level of the erector spinae muscles compared to the comparison chair, and also earned a higher preference in the subjective opinion results. Conclusion: The newly designed chair in this study responds to the user's spine curvature and maintains and enhances the lower back's natural S-curve, and thereby relieves fatigue, promotes better posture, and helps to prevent spine deformities better than existing office chairs. There is a need to widely introduce and supply this new design. Application: The new design is applicable to office and student chairs, and is expected to improve concentration and work efficiency.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

A Pilot Study of Acupuncture Treatment for the Osteoarthritis of the Knee Joint on the EBM(Evidence Basement Medicine) (근거중심의학에 근거한 퇴행성 슬관절염에 관한 침치료 임상선행연구)

  • Lim, Jeong-A;Lee, Jong-Deok;Lee, Sang-Kwan;Lee, Sung-Young;Moon, Hyung-Cheol;Choi, Sun-Mi;Chung, Young-Hae;Kim, Sung-Chul
    • Journal of Acupuncture Research
    • /
    • v.23 no.1
    • /
    • pp.187-215
    • /
    • 2006
  • Objectives : To determine whether the pragmatic acupuncture treatment provides more effective pain relief than treatment using the same acupuncture point to the all patients. Methods : We randomly allocated participants to treatment group 1 and 2. The group 1 is the pragmatic treatment group and the group 2 is using the same acupuncture point to the all patients. Primary outcomes were measured by the Western Ontario and McMaster Universities Osteoarthritis index(WOMAC) pain and function scores at 4, 8, and 14 weeks. Secondary outcomes were measured by 100mm VAS(Visual Analog Scale), ROM(Range of Motion) using Goniometer, and pain threshold using pressure algometer. Results : When patients were extension of the knee, they were statistically significant in improvement of the ROM in 14 weeks. Whole body condition and pain rate through VAS measurement were improved significantly in 14 weeks. Also pain score and function score of WOMAC were improved significantly in 14 weeks. We could get difference in pain score of two acupuncture groups significantly in 14 weeks. But we could not get difference in whole score of two acupuncture groups significantly. Local temperature using T.C thermometer was changed significantly in 14 weeks. But we could not get difference in whole score of two acupuncture groups significantly. Excluding above item, DITI, pain threshold, and ROM of the knee flexion were no difference in before and after treatment.

  • PDF

Development of an Intelligent Legged Walking Rehabilitation Robot (지능적 족형 보행 재활 보조 로봇의 개발)

  • Kim, Hyun;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.9
    • /
    • pp.825-837
    • /
    • 2017
  • This paper describes a novel type of a walking rehabilitation robot that applies robot technologies to crutches used by patients with walking difficulties in the lower body. The primary features of the developed robot are divided into three parts. First, the developed robot is worn on the patient's chest, as opposed to the conventional elbow crutch that is attached to the forearm; hence, it can effectively disperse the patient's weight throughout the width of the chest, and eliminate the concentrated load at the elbow. Furthermore, it allows free arm motion during walking. Second, the developed robot can recognize the walking intention of the patient from the magnitude and direction of the ground reactive forces. This is done using three-axis force sensors attached to the feet of the robot. Third, the robot can perform a stair walking function, which can change vertical movement trajectories in order to step up and down a single stair according to the floor height. Consequently, we experimentally showed that the developed robot can effectively perform walking rehabilitation assistance by perceiving the walking intention of the patient. Moreover we quantitatively verified muscle power assistance by measuring the electromyography (EMG) signals of the muscles of the lower limb.

A Study on Torsional Characteristics of the Car Body Types at Cornering Motion (선회주행 시 차체의 비틀림 특성에 관한 연구)

  • Lee, Joon-Seong;Cho, Seong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.739-744
    • /
    • 2017
  • Elastic deformation and fatigue damage can cause the permanent deformation of a kart's frame during turning, affecting the kart's driving performance. A kart's frame does not contain any suspension or differential devices and, therefore, the dynamic behavior caused by torsional deformation when driving along a curve can strongly affect these two kinds of deformations. To analyze the dynamic behavior of a kart along a curved section, the GPS trajectory of the kart is obtained and the torsional stress acting on the kart-frame is measured in real time. The mechanical properties of leisure and racing karts are investigated by analyzing their material properties and conducting a tensile test. The torsional stress concentration and frame distortion are investigated through a stress analysis of the frame on the basis of the obtained results. Leisure and racing karts are tested in each driving condition using driving analysis equipment. The behavior of a kart when being driven along a curved section is investigated through this test. Because load movement occurs owing to centrifugal force when driving along a curve, torsional stress acts on the kart's steel frame. In the case of a leisure kart, the maximum torsional stress derived from the torsional fatigue limit was found to be 230 MPa, and the torsional fatigue limit coefficient was 0.65 when driving at a speed of 40 km/h. Furthermore, the driving elements during the cornering of a kart were measured based on an actual auto-test after installing a driving measurement system, and the driving behavior of the kart was analyzed by measuring its vertical displacement.

The Effectiveness of Arthroscopy in Complicated Knee Arthroplasty (합병증이 병발된 슬관절 치환술에 시행한 관절경술의 효용성)

  • Kim, Kyung-Tae;Lee, Song;Ko, Dong-Oh;Kim, Kwan-Soo;Kim, Tae-Woo;Park, Soon-Youl
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Purpose: To investigate the outcome of arthroscopic treatment for the complications of knee arthroplasty and to evaluate the effectiveness of arthroscopy. Materials and Methods: We analyzed 25 patients who underwent arthroscopy to treat complications of knee arthroplasty between May 1992 and June 2008. Nineteen cases out of 25 had total knee arthroplasty (TKA) and the remaining 6 cases had unicompartmental knee arthroplasty (UKA). Before arthroscopy, physical examinations and radiographic evaluations were carried out to find out the causes of complications. Joint fluid aspiration and hematologic evaluation were added when infection was suspected. Results: Among the diagnosis at the time of arthroscopy, there were 11 cases of infection, 6 cases of stiffness due to adhesion and fibrosis, and 2 cases of soft tissue impingement in the cases of TKA. Among the cases of UKA, one for each case of meniscal tear, subluxation of mobile insert, hemarthrosis, cement loose body, soft tissue impingement, and stiff knee was found. Nine out of 11 patients who had infection were treated successfully with arthroscopy but the remaining 2 cases underwent revision arthroplasty. Seven patients with arthrofibrosis had improved range of motion from $65^{\circ}$ preoperatively to $105^{\circ}$ postoperatively. The others also showed successful results after arthroscopy. Conclusion: Arthroscopy to treat complications after knee arthroplasty was a safe and effective method when appropriate selection of patients was made.

  • PDF

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE BONE ANCHORED FIXED PROSTHESIS ACCORDING TO THE LOAD CONDITION (골유착 고정성 보철물 하에서 하중조건에 따른 삼차원 유한요소법적 분석)

  • Yang, Soon-Ik;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.780-806
    • /
    • 1995
  • The purpose of this study was to describe the application of 3D finite element analysis to determine resultant stresses on the bone anchored fixed prosthesis, implants and supporting bone of the mandible according to fixture numbers and load conditions. 4 or 6 fixtures and the bone anchored fixed prosthesis were placed in 3D finite element mandibular arch model which represents an actual mandibular skull. A $45^{\circ}$ diagonal load of 10㎏ was labiolingually applied in the center of the prosthesis(P1). A $45^{\circ}$ diagonal load of 20㎏ was buccolingually applied at the location of the 10mm or 20mm cantilever posterior to the most distal implant(P2 or P3). The vertical distribution loads were applied to the superior surfaces of both the right and the left 20mm cantilevers(P4). In order that the boundary conditions of the structure were located to the mandibular ramus and angle, the distal bone plane was to totally fixed to prevent rigid body motion of the entire model. 3D finite element analysis was perfomed for stress distribution and deflection on implants and supporting bone using commercial software(ABAQUS program. for Sun-SPARC Workstation. The results were as follows : 1. In all conditions of load, the hightest tensile stresses were observed at the metal lates of prostheses. 2. The higher tensile stresses were observed at the diagonal loads rather than the vertical loads 3. 6-implants cases were more stable than 4-implants cases for decreasing bending and torque under diagonal load on the anterior of prosthesis. 4. From a biomechanical perspective, high stress developed at the metal plate of cantilever-to-the most distal implant junctions as a consequence of loads applied to the cantilever extension. 5. Under diagonal load on cantilever extension, the 6-implants cases had a tendency to reduce displacement and to increase the reaction force of supporting point due to increasing the bendign stiffness of the prosthesis than 4-implants cases. 6. Under diagonal load on cantilever extension, the case of 10mm long cantilever was more stable than that of 20mm long cnatilever in respect of stress distribution and displacement. 7. When the ends of 10mm or 20mm long cantilever were loaded, the higher tensile stress was observed at the second most distal implant rather than the first most distal implant. 8. The 6-implants cases were more favorable about prevention of screw loosening under repeated loadings because 6-implants cases had smaller deformation and 4-implants cases had larger deformation.

  • PDF