• Title/Summary/Keyword: body forces

Search Result 665, Processing Time 0.024 seconds

Depth Control of a Submerged Body Near the Free Surface by LQR Control Method (LQR 제어 기법을 적용한 수면 근처에서의 수중운동체 심도 제어)

  • Kim, Dong-Jin;Rhee, Key-Pyo;Choi, Jin-Woo;Lee, Sung-Kyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.4
    • /
    • pp.382-390
    • /
    • 2009
  • The submerged body near the free surface is disturbed by the 1st and 2nd order wave forces, which results in unstable movements when no control is applied. In this paper, the vertical motions of the submerged body are analyzed, and the time-variant nonlinear system for the vertical motions of the submerged body is transformed to the time-invariant linear system in state space. Next, depth controller of the submerged body is designed by using LQR control, one of the modern optimal control technique. Numerical simulation shows that effective depth controls can be achieved by LQR control.

Estimation of Human Lower-Extremity Muscle Force Under Uncertainty While Rising from a Chair (의자에서 일어서는 동작 시 불확실성을 고려한 인체 하지부 근력 해석)

  • Jo, Young Nam;Kang, Moon Jeong;Chae, Je Wook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1147-1155
    • /
    • 2014
  • Biomechanical models are often used to predict muscle and joint forces in the human body. For estimation of muscle forces, the body and muscle properties have to be known. However, these properties are difficult to measure and differ from person to person. Therefore, it is necessary to predict the change in muscle forces depending on the body and muscle properties. The objective of the present study is to develop a numerical procedure for estimating the muscle forces in the human lower extremity under uncertainty of body and muscle properties during rising motion from a seated position. The human lower extremity is idealized as a multibody system in which eight Hill-type muscle force models are employed. Each model has four degrees of freedom and is constrained in the sagittal plane. The eight muscle forces are determined by minimizing the metabolic energy consumption during the rising motion. Uncertainty analysis is performed using a first-order reliability method. The one-standard-deviation range of agonistic muscle forces is calculated to be about 150-300 N.

An Efficient Foot-Force Distribution Algorithm for Straight-Line Walking of Quadruped Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇의 평탄 직선보행을 위한 효율적인 다리 힘 배분 알고리즘)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.896-901
    • /
    • 2008
  • This paper addresses the foot force distribution problem for quadruped robots with a failed leg. The quadruped robot has fault-tolerant straight-line gaits with one leg in locked-joint failure, and has discontinuous motion with respect to the robot body. The proposed method is operated in two folds. When the robot body stands still, we use the feature that there are always three supporting legs, and by incorporating the theory of zero-interaction force, we calculate the foot forces analytically without resort to any optimization technique. When the robot body moves, the conventional pseudo-inverse algorithm is applied to obtain the foot forces for supporting legs. Simulation results show the validity of the proposed scheme.

A Dynamic Analysis of Wheel Forces distribution of KTX locomotive for Interaction of PSC box Girder Bridge (PSC 박스거더 교량의 상호작용에 의한 KTX 동력차의 윤하중 분포 해석)

  • Oh, Soon-Taek;Lee, Dong-Jun;Sim, Young-Woo;Yun, Jun-Kwan;Kim, Han-Su
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.680-689
    • /
    • 2011
  • A dynamic analysis procedure is developed to provide a comprehensive estimation of the dynamic response spectrum for locomotive's wheels running over a Pre-Stressed Concrete (PSC) box girder bridge on the Korea high speed railway. The wheel force spectrum with the bridge behavior are analyzed as the dynamic procedure for various running speeds (50~450km/h). The high-speed railway locomotive (KTX) is used as 38-degree of freedom system. Three displacements(vertical, lateral, and longitudinal) and three rotational components (pitching, rolling, and yawing). For one car-body and two bogies as well as five movements except pitching rotation components for four wheel axes forces are considered in the 38-degree of freedom model. Three dimensional frame element is used to model of the PSC box girder bridges, simply supported span length of 40m. The irregulation of rail-way is derived using the exponential spectrum density function under assumption of twelve level tracks conditions based on the normal probability procedure. The dynamic responses of bridge passing through the railway locomotive with high-speed analyzed by Newmark-${\beta}$ method and Runge-Kutta method are compared and contrasted considering the developed models of bridge, track and locomotive comprehensively. The dynamic analyses of wheel forces by Runge-Kutta method which are able to analyze the forces with high frequency running on the bridge and ground rail-way are conducted. Additionally, wheel forces spectrum and three rotational components of vehicle body for three typical running speeds is also presented.

  • PDF

Time Mean Drifting Forces on a Cylinder in Water of Finite Depths -Direct Pressure Integration Method- (유한(有限)깊이의 물에 떠있는 주상체(柱狀體)에 작용(作用)하는 시간평균표류력(時間平均漂流力) -직접압력(直接壓力) 적분법(積分法)-)

  • K.P.,Rhee;K.K.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 1985
  • In this paper, the second order time mean forces acting on the circular cylinder floating on the free surface of a finite water depth are calculated. Under the assumption that fluid is idea and the wave the linear gravity wave, the velocity potential is calculated by the source distribution method, and the second order time mean lateral and vertical drifting forces are calculated by the direct integration of fluid pressures over the immersed body surface. The comparison of the lateral drifting forces with Rhee's results by momentum theorem shows good agreements. And it is shown that the second order time sinkage forces of a floating circular cylinder cross zero for all water depths.

  • PDF

Dynamic Characteristics Analysis of an Escalator Using a Computer Model (전산모델을 이용한 에스컬레이터의 동특성 해석)

  • Park, Chan-Jong;Kwon, Yi-Sug;Park, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose a dynamic model of an escalator which can be used to build a design database. The model permits to estimate the forces applied to the structure by calculating three primary types of forces; the torque required to operate the escalator, the reaction forces at part interconnection points, and contact forces between parts. These forces can then be used to calculate dynamic stresses in the structure which is required to estimate the durability of the structure. Result of the computer model are compared with testing results. This simulation model is used to construct a design database. So when we design a new escalator, this design database can be used to make a new simulation model which makes it possible for us to do a Knowledge-Based-Design.

  • PDF

Interaction of a Floating Body with a Partially Reflective Sidewall in Oblique Waves (경사 입사파중 부분 반사 안벽과 부유체의 상호작용)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.410-418
    • /
    • 2009
  • Based on a linear potential theory, the boundary element method(BEM) is developed and applied to analyze the hydrodynamic forces and the motion responses of a floating body with a partially reflective sidewall. The hydrodynamic forces (added mass and damping coefficients) are dependent on not only the submergence of a floating body and the reflection of a sidewall, but also the gap between body and sidewall. In particular, the partial reflection of a sidewall plays an importance role in the motion responses of a floating body at resonant frequencies. It reduces the resonant peaks caused by resonance phenomenon due to the wave trapping in an enclosed fluid domain between body and sidewall. Developed predictive tools can be used to assess the motion performance of a floating body for various combinations of configuration of a floating body, wave heading, sidewall properties, and wave characteristics and applied to supply the basic informations for the harbour design considering the motion characteristics of a moored ship.

The Energy Release Rate of the Two Dimensional Cracked Body Under Thermal Stresses, Body Forces and Crack-Face Tractions (열응력, 내력 및 균열 경계하중을 고려한 2차원 균열문제의 에너지방출율)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2172-2180
    • /
    • 1993
  • Under general loadings, including body forces, crack-face tractions and thermal loading, the energy release rate equation for a two-dimensional cracked body is presented. Defining the virtual crack extension as the variation of the geometry, the equation is directly derived by a shape design sensitivity of the potential energy. Although the form of the derived energy release rate equation is different from other researchers's results, the three example show that the former is exactly the same as the latter. However, the final integral equation do not involve the derivative of the displacement on the crack surface and crack tip region, thereby improving the numerical accuracy in the computation of the energy relase rate. Moreover, as it was derived from the governing equation including non-linear elasticity without special assumptions, the energy release rate of a elasto-plastic fracture can be obtained and any numerical stress analysis method can be applied.

Experimental Study on the Movement of Pneumatic Actuating Mechanism for Self-Propelling Endoscope (자율주행 내시경을 위한 공압 구동장치의 이동특성에 관한 실험적 연구)

  • Lim, Young-Mo;Park, Ji-Sang;Kim, Byung-Kyu;Park, Jong-Oh;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.194-199
    • /
    • 2001
  • In this paper, we propose a new locomotive mechanism using impulsive force for microcapsule-type endoscope. It has the compact size for movement in the colon and actuating mechanisms for hi-directional movement. The actuating mechanism resembles a pneumatic cylinder and consists of body, inertia mass(piston). spring. pneumatic source and calve. When valve is ON, the pneumatic impulsive force between piston and body drives them in two opposite direction. As the air in the body is passed away, the contrary movements are occurred by spring reaction. Therefore, the direction of body's motion is determined by the relative magnitude of two opposite impulsive forces, i.e., pneumatic and spring force. The effect of two impulsive forces can simply be controlled by On-Off time of solenoid valve.

  • PDF

A Dynamics Model of Rotor Blades for Real-time Simulation of Helicopters (실시간 헬리콥터 시뮬레이션을 위한 회전 깃의 역학적 모델)

  • Park, Su-Wan;Ryu, Kwan-Woo;Kim, Eun-Ju;Baek, Nak-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.255-262
    • /
    • 2007
  • Physically-based researches on simulating helicopter motions have been achieved in the field of aeronautics, aerodynamics and others. These results, however, have not been appled in the computer graphics area, mainly due to their complex equations and heavy computations. In this paper, we propose a dynamics model of helicopter rotor blades, which would be easy to implement, and suitable for real-time simulations of helicopters in the computer graphics area. Helicopters fly by the forces due to the collisions between air and rotor blades. These forces can be interpreted as the impulsive forces between the fluid and the rigid body. Based on these impulsive forces, we propose an approximated dynamics model of rotor blades, and it enables us to simulate the helicopter motions using existing rigid body simulation methods. We compute forces due to the movement of rotor blades according to the Newton's method, to achieve its real-time computations. Our prototype implementation shows real-time aerial navigation of helicopters, which are murk similar to the realistic motions.