• Title/Summary/Keyword: body forces

Search Result 665, Processing Time 0.027 seconds

Vertical ground reaction force in the treadmill walking and running (Treadmill에서의 보행 및 주행 시의 수직 지면반발력)

  • Yang, G.T.;Kim, Y.H.;Lim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.339-342
    • /
    • 1996
  • Vertical ground reaction forces on a treadmill were measured at different walking speeds using two tandem force plates. Comparing vertical ground reaction forces in treadmill walking with those in ground free walking, treadmill walking overestimated the first and second peak forces. With the increase of the walking speed, this phenomenon becomes more significant. In treadmill running, the first peak force reached 210-280% of the body weight. However, the instrumented treadmill showed a great potential to investigate the kinetics for multiple foot-strike measurements.

  • PDF

Current Effect on the Motion and Drift Force of Cylinders Floating in Waves (주상체(柱狀體)의 운동(運動) 및 표류력(漂流力)에 미치는 해류(海流)의 영향(影響))

  • Sei-Chang,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.4
    • /
    • pp.25-34
    • /
    • 1986
  • A two-dimensional linear method has been developed for the motion and the second-order steady force arising from the hydrodynamic coupling between waves and currents in the presence of a body of arbitrary shape. Interaction between the incident wave and current in the absence of the body lies in the realm beyond our interest. A Fredholm integral equation of the second kind is employed in association with the Haskind's potential for a steadily moving source of pulsating strength located in or below the free surface. The numerical calculations at the preliminary stage showed a significant fluctuation of the hydrodynamic forces on the surface-piercing body. The problem is approximately solved by using the asymptotic Green function for $U^2{\rightarrow}0$. The original Green function, however, is applied for the fully submerged body. Numerical calculations are made for a submerged and for a half-immersed circular cylinder and extensively for the mid-ship section of a Lewis-form. Some of the results are compared with other analytical results without any available experimental data. The current has strong influence on roll motion near resonance. When the current opposes the waves, the roll response are generally negligible in the low frequency region. The current has strong influence on roll motion near resonance. When the current opposes the wave, the roll response decreases. When the current and wave come from the same direction, the roll response increases significantly, as the current speed increases. The mean drift forces and moment on the submerged body are more affected by current than those on the semi-immersed circular cylinder or on the ship-like section in the encounter frequency domain.

  • PDF

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

Flexibility Effects of Frame for Vehicle Dynamic Characteristics (차량 동특성에 대한 프레임의 유연성 효과)

  • 이상범
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • Previous method of computer simulation to predict the dynamic response of a vehicle has been based on the assumption that vehicle structure is rigid. If the flexibility of the vehicle structure becomes too large to ignore, rigid body assumption will no longer give good estimation of the dynamic characteristics. Therefore, in order to predict more precise vehicle dynamic characteristics, flexible multi-body dynamic analysis of a vehicle is necessary. This paper investigates dynamic characteristics of vehicle systems with flexible frames numerically. Joint reaction forces, vertical accelerations, pitch accelerations are analyzed for the vehicle systems with various flexible frames using multi-body dynamic analysis code and finite element analysis code.

A Numerical Investigation on the Wake Flow Characteristics and Rear-Spoiler Effect of a Large-Sized Bus Body (대형버스 바디모델의 후류특성 및 후미 스포일러 효과에 관한 해석적 고찰)

  • 김민호;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.126-133
    • /
    • 2003
  • The aerodynamic characteristics of automobiles have received substantial interest recently. Detailed knowledge of the vehicle aerodynamics is essential to improve fuel efficiency and enhance stability at high-speed cruising. In this study, a numerical simulation has been carried out for three-dimensional turbulent flows around a commercial bus body. Also, the effect of rear-spoiler attached at rear end of bus body was investigated. The Wavier-Stokes equation is solved with SIMPLE method in general curvilinear coordinates system. RNG $k-\varepsilon$ turbulence model with the MARS scheme was used for the evaluating aerodynamic forces, velocity and pressure distribution. The results showed details of the three-dimensional wake flow in the immediate rear of bus body and the effect of rear-spoiler on the wake structure. A maximum of 14% reduction in drag coefficient was achieved for a model with a rear-spoiler.

Analyzing Materials Property using Optical Sensing Technique of Stabilizer Link for Automobile Parts (수송기계용 Stabilizer Link의 광센서를 이용한 부품성능평가)

  • Nam, K.W.;Woo, Y.M.;Oh, J.H.;Moon, C.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.47-53
    • /
    • 2010
  • A stabilizer link connects the stabilizer bar to the lower arm of the suspension. When a vehicle is turning, lateral forces from the tire are transmitted through the stabilizer link into the stabilizer bar. The stabilizer bar will twist, thus adding rigidity to the vehicle body. In this study, the stabilizer link body was manufactured by using composite material with POM-GF25%. Therefore, the strength evaluation of stability link body with composite material carried out from tensile, wear and fatigue test. The tensile strength between the stability link body with composite material and the rod with knurling was the largest of four types of rod. In Analyzing materials property using optical sensing technique of stabilizer link for automobile parts, its has been identified the safety.

2-dimensional Hydrodynamic Forces of Heaving, Swaying and Rolling Cylinders on a Free Surface of a Water of Finite Depth

  • Rhee, K.P.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.3
    • /
    • pp.13-22
    • /
    • 1977
  • The hydrodynamic forces acting on a forced oscillating 2-dimensional cylinder on a free surface of a fluid of a finite depth are calculated by distributing singularities on the immersed body surface. And the Haskind-Newman relation in a fluid of a finite depth is derived. The wave exciting force of the cylinder to an oscillation is also calculated by using the above relation. The method is applied to a circular cylinder swaying in a water of finite depth, and then, to a rectangular cylinder heaving, swaying, and rolling. The results of above cases give a good agreement with those by earlier investigators such as Bai, Keil, and Yeung. Also, this method is applied to a Lewis form cylinder with a half beam-to-draft ratio of 1.0 and a sectional area coefficient of 0.941, and to a bulbous section cylinder which is hard to represent by a mapping function. The results reveal that the hydrodynamic forces in heave increase as the depth of a water decrease, but in sway or roll, the tendency of the hydrodynamic forces is difficult to say in a few words. The exciting force to heave for a bulbous section cylinder becomes zero at two frequencies. The added mass moment of inertia for roll is seemed to mainly depend on the sectional shape than the water depth.

  • PDF

Massless Links with External Forces and Bushing Effect for Multibody Dynamic Analysis

  • Sohn, Jeong-Hyun;Yoo, Wan-Suk;Hong, Keum-Shik;Kim, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.810-818
    • /
    • 2002
  • When the contribution of lightweight components to the total energy of a system is small, tole inertia effects are sometimes ignored by replacing them to massless links. For example, a revolute-spherical massless link generates two kinematic constraint equations between adjacent bodies and allows four relative degrees of freedom. In this paper, to implement a massless link systematically in a computer program using the velocity transformation technique, the velocity transformation matrix of massless links is derived and numerically implemented. The velocity transformation matrix for a revolute-spherical massless link and a revolute-universal massless link are appeared as a 6$\times$4 matrix and a 6$\times$3 matrix, respectively. A massless link model in a suspension composite joint transmitting external forces is also developed and the numerical efficiency of the proposed model is compared to a conventional multibody model. For a massless link transmitting external forces, forces acting on links are resolved and transmitted to the attached points with a quasi-static assumption. Numerical examples are presented to verify the formulation.

Two-Axis Force Rransducer for Measuring Flange Reaction Forces in the Tape Transport of VCR (VCR 주행장치의 2축 플랜지 반력 측정장치 개발)

  • Joo, Jin-Won;Kim, Seung-Hwan;Kim, Gap-Soon;Lee, Kyeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2213-2222
    • /
    • 1996
  • This paper presents the design process and evaluaation results of a two-axis force transducer for measuring flange reaction forces. A double-cantilever beam structure is used as a sensing element, and its optimal configuration is determined based on the derived strain equations to maximize the sensitivity and minimize the regid body displacements. To reduce the coupling errors between two-axis forces, strain distributions by finite elemetns analysis are utilized and the Wheaststone bridge cricuits composed of strain gages are built such that the output voltage should be zero, although strains of four strain gages are not zero. Calibration test shows that the two-azxis force transducer developed in this paper is useful in measuring flange reaction forces within the coupling error of 5.53%.

Horizontal hydrodynamic coupling between shuttle tanker and FPSO arranged side-by-side

  • Wang, Hong-Chao;Wang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.275-294
    • /
    • 2013
  • Side-by-side offloading operations are widely utilized in engineering practice. The hydrodynamic interactions between two vessels play a crucial role in safe operation. This study focuses on the coupled effects between two floating bodies positioned side-by-side as a shuttle tanker-FPSO (floating production, storage and offloading) system. Several wave directions with different side-by-side distances are studied in order to obtain the variation tendency of the horizontal hydrodynamic coefficients, motion responses and mean drift forces. It is obtained that the coupled hydrodynamics between two vessels is evidently distinguished from the single body case with shielding and exaggerating effects, especially for sway and yaw directions. The resonance frequency and the peak amplitude are closely related with side-by-side separation distance. In addition, the horizontal hydrodynamics of the shuttle tanker is more susceptible to coupled effects in beam waves. It is suggested to expand the gap distance reasonably in order to reduce the coupled drift forces effectively. Attention should also be paid to the second peaks caused by hydrodynamic coupling. Since the horizontal mean drift forces are the most mainly concerned forces to be counteracted in dynamic positioning (DP) system and mooring system, prudent prediction is beneficial in saving consumed power of DP system and reducing tension of mooring lines.