• 제목/요약/키워드: body configuration

검색결과 313건 처리시간 0.03초

Large displacement Lagrangian mechanics -Part I - Theory

  • Underhill, W.R.C.;Dokainish, M.A.;Oravas, G.Ae.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.73-89
    • /
    • 1996
  • In Lagrangian mechanics, attention is directed at the body as it moves through space. The region occupied by the body is called a configuration. All body points are labelled by the position they would have if the body were to occupy a chosen reference configuration. The reference configuration can be regarded as an extra fictional copy where notes are kept. As the body moves and deforms, it is important to correctly observe the use of each configuration for computational purposes. The description of strain is particularly important. The present work establishes clearly the role of each configuration in total and in incremental forms. This work also details the differences between gradient and configurational calculus.

THE COMPARISON OF PIFS AND HEAT TRANSFER WITH BASE CONFIGURATIONS (기저 형상에 따른 PIFS 및 열전달 비교 연구)

  • Kim, J.G.;Lee, J.W.;Kim, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.195-200
    • /
    • 2010
  • Numerical investigation was conducted to study the effects of after-body configurations and nozzle lip on the PIFS(Plume Induced Flow Separation) and eat flux to the base face. Two dimensional and axi-symmetric non-equilibrium Navier-Stoke's solver with $k-{\omega}$ SST turbulence model was used to solve the launching vehicle type configuration with propulsive jet. The experimental result of Robert J. McGhee was compared with our computational results for code validation. Three types of the after-body configurations (Straight, Boat-tail, Flare type) were simulated for this study. And the nozzle lip effect was studies using the three types of base configurations same simulation conditions. As a result of numerical investigations, higher pressure ratio condition and boat-tail after-body configuration caused severe PIFS phenomenon but the flare type after-body configuration and low pressure ratio suppressed PIFS. Flare type after-body configuration and low pressure ratio case reduced heat flux to base face. The nozzle lip dispersed the heat flux widely along the base face and the nozzle lip.

  • PDF

Large displacement Lagrangian mechanics -Part II - Equilibrium principles

  • Underhill, W.R.C.;Dokainish, M.A.;Oravas, G.Ae.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.91-107
    • /
    • 1996
  • In Lagrangian mechanics, attention is directed at the body as it moves through space. Each body point is identified by the position it would have if the body were to occupy an arbitrary reference configuration. A result of this approach is that the analyst often describes the body by using quantities that may involve more than one configuration. This is particularly common in incremental calculations and in changes of the choice of reference configuration. With the rise of very powerful computing machinery, the popularity of numerical calculation has become great. Unfortunately, the mechanical theory has been evolved in a piecemeal fashion so that it has become a conglomeration of differently developed patches. The current work presents a unified development of the equilibrium principle. The starting point is the conservation of momentum. All details of configuration are shown. Finally, full dynamic and static forms are presented for total and incremental work.

DEVELOPMENT OF AERODYNAMIC SHAPE OPTIMIZATION TOOLS FOR MULTIPLE-BODY AIRCRAFT GEOMETRIES OVER TRANSONIC TURBULENT FLow REGIME (천음속 난류 유동장에서의 다중체 항공기 형상의 공력 설계 도구의 개발)

  • Lee, B.J.;Lee, J.S.;Yim, J.W.;Kim, Chong-Am
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.100-110
    • /
    • 2007
  • A new design approach for a delicate treatment of complex geometries such as a wing/body configuration is arranged using overset mesh technique under large scale computing environment for turbulent viscous flow. Various pre- and post-processing techniques which are required of overset flow analysis and sensitivity analysis codes are discussed for design optimization problems based on gradient based optimization method (GBOM). The overset flow analysis code is validated by comparing with the experimental data of a wing/body configuration (DLR-F4) from the 1st Drag Prediction Workshop (DPW-I). In order to examine the applicability of the present design tools, careful design works for the drag minimization problem of a wing/body configuration are carried out by using the developed aerodynamic shape optimization tools for the viscous flow over multiple-body aircraft geometries.

  • PDF

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • PARK JONC-CHUN;KANG DAE-HWAN;CHUN HO-HWAN
    • Journal of Ocean Engineering and Technology
    • /
    • 제17권5호
    • /
    • pp.1-10
    • /
    • 2003
  • When a body with slant angle behind its shoulder is moving at a high speed, the turbulent motion around the afterbody is generally associated with the flow separation, and determines the normal component of the drag. By changing the slant angle of the afterbody, the drag coefficients can be changed, drastically. Understanding and controlling the turbulent separated flows has significant importance for the design of optimal configuration of the moving bodies. In this paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies, using slant angle. By understanding the structure of the turbulent flow around the body, the new configuration of afterbodies is designed to reduce the drag of body, and the nonlinear effects, due to the interaction between the body configuration and the turbulent separated flows, are investigated by use of the developed LES technique.

Large Eddy Simulations on the Configuration Design of Afterbodies for Drag Reduction (저항감소를 위한 물체후방의 형상설계에 관한 LES 해석)

  • Park, Jong-Chun;Kang, Dae-Hwan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.49-55
    • /
    • 2003
  • When a body with slant angle after its shoulder is moving at high speed, the turbulent motion around the afterbody is generally associated with the flaw separation and determines the normal component of the drag. By changing the slant angle of afterbody, there exists a critical angle at which the drag coefficients change drastically. Understanding and control of the turbulent separated flows are of significant importance for the design of optimal configuration of the moving bodies. In the present paper, a new Large Eddy Simulation technique has been developed to investigate turbulent vortical motions around the afterbodies with slant angle. By basis of understanding the structure of turbulent flaw around the body, the new configuration of afterbodies are designed to reduce the drag of body and the nonlinear effects due to the interaction between the body configuration and the turbulent separated flows are investigated by use of the developed LES technique.

  • PDF

Air Flow Analysis due to the Configuration of Car Body Radiator Grill (차체 라디에이터그릴의 형상에 따른 공기 유동해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제12권3호
    • /
    • pp.21-27
    • /
    • 2013
  • This study is investigated on flow analysis according to grill configuration of radiator. The stream of flow which pass through radiator grill in car body and the contour of pressure distribution are estimated by the basis. As the magnitude of resistance force which flow affects the car body is investigated so that the power reduction can be reduced. As the pressure inside radiator grill is assessed, more efficiency can be investigated in order that the flow rate inside car body can be increased. Model 2 has the most air resistance and model 1 has the least among model 1, 2 and 3. Model 1 has the most air flow rate at inside. There are model 3 and 2 simulated according to flow rate. As the curved surface at radiator grill configuration increases in number, air flow rate becomes distributed uniformly. By considering the effect on air resistance and air flow rate at radiator grill, model 3 becomes the most effective configuration.

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

Body Shape Variations Measurements with 3D Scanner for Wearing Foundation (3D Scanner를 이용한 foundation 착용시의 인체 변화 계측)

  • Park, Ji-Eun;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • 제9권6호
    • /
    • pp.651-657
    • /
    • 2007
  • This study was carried out to analyse body configuration and to observe any space between skin and foundation. A special 3D scanner was used to analyze this foundation. Experimental foundations were brassiere, girdle, and all-in-one. Four subjects volunteered, each subject was scanned while wearing foundation and not wearing foundation. Body shape variations were analyzed with an Auto CAD and ScanWax program which analyzes cross section of the skin surface to look for any changes. Height was increased all parts of body, circumference was increased in breast and bust while wearing the foundation. The hip thickness was not increased with wearing the foundation. Therefore this foundation makes people have a different appearance due to unexpected body shape variations. The effects of this foundation should be classified by observing height, circumference, and thickness changes in the body.

Collision Configurations Reconstruction Using Deformation Shape and Deformation Severity of Car Body (차체의 변형상과 변형정도에 의한 자동차 충돌상황의 재구성)

  • 장인식;채덕병
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제9권1호
    • /
    • pp.171-180
    • /
    • 2001
  • Collision accident reconstruction algorithm are developed based on the deformation shape and severity of a car body. At first, the body stiffness equation representing the force-deformation relationship is derived using finite element analysis for head on collision of two cars. The database of deformation shapes and energies is constructed for five different collision configurations; each configuration contains three velocity conditions. Deformation shapes are obtained using a curve fitting method and result in cubic polynomials. Deformation energies are calculated using a stiffness equation and deformation data. Three algorithms are developed to reconstruct collision configuration compared with constructed database. The developed algorithms show reasonably good performance to find collisions conditions for some test problems.

  • PDF