• Title/Summary/Keyword: blue LED

Search Result 601, Processing Time 0.029 seconds

Improving the Productivity of Recombinant Protein in Escherichia coli Under Thermal Stress by Coexpressing GroELS Chaperone System

  • Kim, So-Yeon;Ayyadurai, Niraikulam;Heo, Mi-Ae;Park, Sung-Hoon;Jeong, Yong-Joo;Lee, Sun-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.72-77
    • /
    • 2009
  • Here, we demonstrate that the overexpression of the GroELS chaperone system, which assists the folding of intracellular proteins and prevents aggregation of its biological targets, can enhance the thermotolerance of Escherichia coli strains and facilitate the production of recombinant protein under thermal stress. The overexpression of GroELS led to an about 2-fold higher growth rate of E. coli XL-1 blue than control at $45^{\circ}C$ and induced the growth of the strain even at $50^{\circ}C$, although the growth was not sustained in the second-round culture. The effect of GroELS overexpression was also effective on other E. coli strains such as JM109, $DH5{\alpha}$, and BL21. Finally, we have shown that coexpression of GroELS allows us to produce recombinant protein even at $50^{\circ}C$, a temperature at which the protein production based on E. coli is not efficient. This study indicates that the employment of the GroELS overexpression system can expand the range of environmental conditions for E. coli.

Emission and Structural Properties of Titanium Oxide Nanoparticles-coated a-plane (11-20) GaN by Spin Coating Method

  • Kim, Ji-Hoon;Son, Ji-Su;Baik, Kwang-Hyeon;Park, Jung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.146-146
    • /
    • 2011
  • The blue light emitting diode (LED) structure based on non-polar a-plane (11-20) GaN which was coated TiO2 nanoparticles using spin coating method was grown on r-plane (1-102) sapphire substrates to improve light extraction efficiency. We report on the emission and structural properties with temperature dependence of photoluminescence (PL) and x-ray rocking curves (XRC). From PL results at 13 K of undoped GaN samples, basal plane stacking fault (BSF) and near band edge (NBE) emission peak were observed at 3.434 eV and 3.484 eV, respectively. We also found the temperature-induced band-gap shrinkage, which was fitted well with empirical Varshini's equation. The PL intensity of TiO2 nanoparticles ?coated multiple quantum well (MQW) sample is decayed slower than that of no coating sample with increasing temperature. The anisotrophic strain and azimuth angle dependence in the films were shown from XRC results. The full width at half maximum (FWHM) along the GaN [11-20] and [1-100] directions were 564.9 arcsec and 490.8 arcsec, respectively. A small deviation of FWHM values at in-plane direction is attributed to uniform in-plane strain.

  • PDF

Al-doping Effects on Structural and Optical Properties of Prism-like ZnO Nanorods

  • Kim, So-A-Ram;Kim, Min-Su;Cho, Min-Young;Nam, Gi-Woong;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.420-420
    • /
    • 2012
  • ZnO seed layer were deposited on quartz substrate by sol-gel method and prism-like Al-doped ZnO nanorods (AZO nanorods) were grown on ZnO seed layer by hydrothermal method with various Al concentration ranging from 0 to 2.0 at.%. Structural and optical properties of the AZO nanorods were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL). The diameter of the AZO nanorods was smaller than undoped ZnO nanorods and its diameter of the AZO nanorods decreased with increasing Al concentration. In XRD spectrum, it was observed that stress and full width at half maximum (FWHM) of the AZO nanorods decreased and the 'c' lattice constant increased as the Al concentration increased. From undoped ZnO nanorods, it was observed that the green-red emission peak of deep-level emission (DLE) in PL spectra. However, after Al doping, not only a broad green emission peak but also a blue emission peak of DLE were observed.

  • PDF

Optical and microstructural behaviors in the GaN-based LEDs structures with the p-GaN layers grown at different growth temperatures (GaN 기반 LED구조의 p-GaN층 성장온도에 따른 광학적, 결정학적 특성 평가)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Kim, Young-Yi;Han, Won-Suk;Ahn, Cheol-Hyoun;Choi, Mi-Kyung;Cho, Hyung-Koun;Lee, Ju-Young;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.144-144
    • /
    • 2008
  • Blue light emitting diode structures consisting of the InGaN/GaN multiple quantum wells were grown by metalorganic chemical vapor deposition at different growth temperatures for the p-GaN contact layers and the influence of growth temperature on the emission and microstructural properties was investigated. The I-V and electroluminescence measurements showed that the sample with a p-GaN layer grown at $1084^{\circ}C$ had a lower electrical turn-on voltage and series resistance, andenhanced output power despite the low photoluminescence intensity. Transmission electron microscopy (TEM) revealed that the intense electro luminescence was due to the formation of a p-GaN layer with an even distribution of Mg dopants, which was confirmed by TEM image contrast and strain evaluations. These results suggest that the growth temperature should be optimized carefully to ensurethe homogeneous distribution of Mg as well as the total Mg contents in the growth of the p-type layer.

  • PDF

Photoconductivity in Mg-doped p-type GaN by MBE

  • ;;;;;Yuldashev
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.120-120
    • /
    • 1999
  • III-nitride계 물질들은 blue와 UV 영역의 LED, LD와 같은 광소자뿐만 아니라 HBT, FET와 같은 전자소자로도 널리 응용되고 있다. 이와 같은 물질을 이용한 소자를 제작할 수 있는 낮은 저항의 ohmic contact은 필수적이다. Al이나 Ti와 같은 물질을 기초로 한 n-GaN의 경우는 이미 많은 연구결과가 발표되어 전기적 광학적 소자를 동작하는데 충분히 낮은 ohmic contact저항( )을 었다. 그러나 p-GaN의 ohmic contact은 아직까지 많은 문제점을 내포하고 있다. 그 중의 하나는 높은 doping 농도( )의 p-GaN 박막을 성장하기가 어렵다는 것이며, 또 하나는 낮은 접촉 비저항을 얻기 위해선 7.5eV이상의 큰 재가 function을 지닌 금속을 선택해야 한다. 그러나 5.5eV 이상의 재가 function을 갖는 금속은 존재하지 않는다. 위와 같은 문제점들은 p-GaN의 접촉 비저항이 이상의 높은 값을 갖게 만들고 있으며, 이에 대한 해경방안으로는 고온의 열처리를 통하여 p-GaN와 금속 사이에서 화학적 반응을 일으킴으로써 표면 근처에서 캐리어농도를 증가시키고, 캐리어 수송의 형태가 tunneling 형태로 일어날 수 있도록 하는 tunneling current mechanism을 이용하는 것이다. 이로 인해 결국 낮은 접촉 비저항을 얻을 수 있게되며, 일반적으로 p-GaN에서는 Nidl 좋은 물질로 알려져 있다. 그러나 Ni은 50$0^{\circ}C$이상의 열처리에서 쉽게 산화되는 특성 때문에 높은 캐리어를 얻는데 어려운 문제점이 있다. 이에 본 연구에서는 MBE로 성장된 p-GaN박막을 Mg의 activation을 더욱 증가시키기 위해 N2 분위기에서 15분간 90$0^{\circ}C$에서 annealing을 하였으며, ohmic 접촉을 위한 금속으로 높은 재가 function과 좋은 adhesion 그리고 낮은 자체저항을 가지고 있는 Ni/Au를 ohmic metal로 하여 contact한 후에 90$0^{\circ}C$에서 10초간 rapid thermal annealing (RTA)처리를 했다. 성장된 박막의 광학적 성질은 PL로써 측정하였으며, photoconductivity 실험을 통해 impurity의 life time을 분석하였고, persistent photoconductivity를 통해 dark current를 측정하였다. 또한 contact resistance를 계산하기 위해 circular-TLM method을 이용하여 I-V 특성을 조사하였다.

  • PDF

Effects of Current Density and Anodization Time on the Properties of Porous Si (양극산화 시간 및 전류밀도 변화에 따른 다공질 실리콘의 특성 변화)

  • Choi, Hyun-Young;Kim, Min-Su;Kim, Ghun-Sik;Cho, Min-Young;Jeon, Su-Min;Yim, Kwang-Gug;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Leem, Jae-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.121-126
    • /
    • 2010
  • The PS(porous Si) were fabricated with different anodization time and current density. The structural and optical properties of PS were investigated by SEM(scanning electron microscopy), AFM(atomic force microscopy), and PL(photoluminescence). It is found that the pore size and surface roughness of PS are proportional to the current density. The PL spectra show that the PL peak position is red-shifted with increasing anodization time. This behavior corresponds to the change of pore size which is consistent with the quantum confinement model. The FWHM(full width at half maximum) of PL peak is decreased from 97 to 51 nm and the PL peak position is blue-shifted with increasing current density up to 10 mA/$cm^2$. The PL peak intensity of the PS fabricated under 1 mA/$cm^2$ is the highest among samples.

Comparative Dynamics of $tRNA^{val}$ and pBluescript II SK(+) Phagemid Studied with Ethidium Bromide and a Long-lifetime Metal-ligand Complex

  • Kang, Jung-Sook;Yoon, Ji-Hye
    • Journal of Photoscience
    • /
    • v.11 no.3
    • /
    • pp.133-139
    • /
    • 2004
  • The metal-ligand complex, $[Ru(phen)_2(dppz)]^{2+}$ (phen=1,10-phenanthroline, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuPD), was used as a spectroscopic probe for studying nucleic acid dynamics. The RuPD complex displays a long lifetime and a molecular light switch property upon DNA binding due to shielding of its dppz ligand from water. To show the usefulness of this luminophore (RuPD) for probing nucleic acid dynamics, we compared its intensity and anisotropy decays when intercalated into the $tRNA^{val}$ and pBluescript (pBS) II SK(+) phagemid through a comparison with ethidium bromide (EB), a conventional nucleic acid probe. We used frequency-domain fluorometry with a blue light-emitting diode (LED) as the modulated light source. The mean lifetime for the $tRNA^{val}$ (<${\tau}$> = 166.5 ns) was much shorter than that for the pBS II SK(+) phagemid (<${\tau}$> = 481.3 ns), suggesting a much more efficient shielding from water by the phagemid. Because of their size difference, the anisotropy decay data showed a much shorter rotational correlation times for the $tRNA^{val}$ (99.9 and 23.6 ns) than for the pBS II SK(+) phagemid (968.7 and 39.5 ns). These results indicate that RuPD can be useful for studying nucleic acid dynamics.

  • PDF

Effects of Light-Quality Control on the Plant Growth in a Plant Factory System of Artificial Light Type (인공광 식물공장내 광질 제어가 작물생육에 미치는 영향)

  • Heo, Jeong-Wook;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.270-278
    • /
    • 2021
  • BACKGROUND: Horticultural plant growth under field and/or greenhouse conditions is affected by the climate changes (e.g., temperature, humidity, and rainfall). Therefore investigation of hydroponics on field horticultural crops is necessary for year-round production of the plants regardless of external environment changes under plant factory system with artificial light sources. METHODS AND RESULTS: Common sage (Salvia plebeia), nasturtium (Tropaeolum majus), and hooker chive (Allium hookeri) plants were hydroponically culturing in the plant factory with blue-red-white LEDs (Light-Emitting Diodes) and fluorescent lights (FLs). Leaf numbers of common sage under mixture LED and FL treatments were 134% and 98% greater, respectively than those in the greenhouse condition. In hooker chives, unfolded leaf numbers were 35% greater under the artificial lights and leaf elongation was inhibited by the conventional sunlight compared to the artificial light treatments. Absorption pattern of NO3-N composition in hydroponic solution was not affected by the different light qualities. CONCLUSION(S): Plant factory system with different light qualities could be applied for fresh-leaf production of common sage, nasturtium, and hooker chive plants culturing under field and/or greenhouse. Controlled light qualities in the system resulted in significantly higher hydroponic growth of the plants comparing to conventional greenhouse condition in present.

Influence of Surfactant on the Iodine Complex Formation of Some Non-ionic Polymers (비이온성 고분자의 Iodine 착물형성에 대한 계면활성제의 영향)

  • Ahn, Beom-Shu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1031-1037
    • /
    • 2018
  • The formation of a complex between PVP or HPC and iodine was indicated by a red shift in the tri-iode band while PVA-iodine complex showed its characterized band around 500 nm in pure aqueous media. Addition of surfactant SDS resulted in a disapperance of the characteristic blue color of the PVA-iodine complex indicating that the complex is not formed in aqueous surfactant media. However in case of PVP or HPC, presence of the monomers of SDS favored the complex formation but in higher concentration, the micelles of SDS decreased the complex. Complexation was found to increase with increasing content of n-propanol in the system since n-propanol inhibits the formation of gels or microgels in the polymer solution. But in case of PVA-iodine complex, addition of n-propanol led to conversion of bigger polyiodides into smaller ones, which is indicative of increased intermolecular hydrogen bond interaction between propanol and PVA effecting a decrease in the PVA aggregate space.

Electron Beam Evaporated ITO Transparent Electrode for Highly Efficiency GaN-based Light Emitting Diode (고효율 질화갈륨계 발광 다이오드용 전자선 증착 ITO 투명 전도 전극 연구)

  • Seo, Jae Won;Oh, Hwa Sub;Kang, Ki Man;Moon, Seong Min;Kwak, Joon Seop;Lee, Kuk Hwe;Lee, Woo Hyun;Park, Young Ho;Park, Hae Sung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.683-690
    • /
    • 2008
  • In order to develop transparent electrodes for high efficiency GaN-based light emitting diodes (LEDs), the electrical and optical properties of the electron beam evaporated ITO contacts have been investigated as a function of the deposition temperature and flow rate of oxygen during the deposition. As the deposition temperature increases from $140^{\circ}C$ to $220^{\circ}C$, the resistivity of the ITO films decreases slightly from $4.0{\times}10^{-4}{\Omega}cm$ to $3.3{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films significantly increases from 67% to 88% at the wavelength of 470 nm. When the flow rate of oxygen during the deposition increases from 2 sccm to 4 sccm, the resistivity of the ITO films increases from $3.6{\times}10^{-4}{\Omega}cm$ to $7.4{\times}10^{-4}{\Omega}cm$, meanwhile the transmittance of the ITO films increases from 86% to 99% at 470 nm. Blue LEDs fabricated with the electron beam evaporated ITO electrode show that the ITO films deposited at $200^{\circ}C$ and 3 sccm of the oxygen flow rate give a low forward-bias voltage of 3.55 V at injection current of 20 mA with a highest output power.