• Title/Summary/Keyword: blooms

Search Result 456, Processing Time 0.023 seconds

Fresh-water Algae Occurred in Paddy Rice Fields III. Identification and Propagation of Green Algae (논발생(發生) 담수조류(淡水藻類)에 관(關)한 연구(硏究) III. 녹조류(綠藻類)의 동정(同定) 및 번식생태(繁殖生態))

  • Lee, H.K.;Park, J.E.;Ryu, G.H.;Lee, J.O.;Park, Y.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.4
    • /
    • pp.335-351
    • /
    • 1992
  • The identification of green algae which were collected from paddy rice fields of the whole nation was conducted in 1991, and also the reproduction processes of three important green algae were investigated. The green algae identified were 46 species in 16 families including 4 species in the Volvocaceae, 4 species in the Palmellaceae, 3 species in the Ulotrichaceae, 3 species in the Oocystaceae and 6 species in the Scenedesmaceae. It was recognized that the algae which have caused a large injury to the flooded direct-seeded rice in Seosan reclaimed saline land was the genus Cladophora. The green water blooms on paddy water were induced mostly by the concentrated populations of suspended green algae such as the genera, Chlamydomonas and Stichococcus. A rapid propagation of Hydrodictyon was resulted from the asexual reproduction forming autocolony in each mother cell. The sexual and asexual reproduction processes of Oedogonium and the sexual reproduction process of Spirogyra were observed.

  • PDF

Seawater Desalination Pretreatments and Future Challenges (해수담수화 전처리 기술과 향후 도전)

  • Jang, Hoseok;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.25 no.4
    • /
    • pp.301-309
    • /
    • 2015
  • Importance of pretreatment for seawater desalination is growing rapidly. Proper selection of pretreatment is critical for the successful, long-term operation in the seawater desalination plant such as seawater reverse osmosis (SWRO). The purposes of seawater pretreatment are to remove particulate, colloidal materials, organic, inorganic materials, microorganisms and their by-products present in the seawater, and thus to improve the performance of seawater desalination systems. However, pretreatment is most challenging for designing and operating seawater desalination plants because of fluctuations of water qualities, site specifications and wide ranges of target materials present in the seawater to be treated. In addition, it is also becoming evident increasingly that microscopic algae are a major cause of operational problems, for example, membrane fouling which is long-standing problem in SWRO process. Pretreatment strategies prior to the operation of seawater desalination technologies should be even more complicated by algae blooms and release of their harmful by-products in marine environment. This paper reviews the roles of various pretreatment methods in seawater desalination process. Benefits and drawbacks are described, which should be taken into account in future studies on selecting pretreatment for seawater desalination process.

A study on external and internal morphology in 4 kinds of Uie-Suel Radix (4종 우슬(牛膝)의 외내부형태 연구)

  • Kang, Dae-Hoon;Kim, Jeong-Hi;Na, Seung-Young;Ju, Young-Sung;Kim, Jong-Mun
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.71-79
    • /
    • 2007
  • Objectives : This study was designed to establish a characteristic discrimination of internal and external morphological standard of original plants and herbal states in Polygoni Multiflori and Cynanchi Wilfordii Radix. Methods : In this studies, the external-internal morphological standards were determined by using stereoscope and butanol series. Results: 1. The external characteristics of original plants: Polygonum Multiflorum has alternate leaves, and its flower with white color blooms at the shoot apex or leaf axil. In the other hand, Cynanchum wilfordii has opposite leaves, and its flower with yellowish green color blooms at the leaf axil. 2. The physical characteristics of herbal slates: Polygoni Multiflori Radix is red-brown in outer surface pink-brown in section. In the other hand, Cynanchi Wilfordii Radix is earthly-brown in outer surface greyish white in section. 3. The physical characteristics according to the place of production: Demonstrable difference according to the place of production is not seen. Polygoni Multiflori Radix is brown or dark brown in outer surface, soft $Yellow{\sim}dark$ brown in section. In the other hand, Cynanchi Wilfordii Radix is white in outer surface, $white{\sim}weak$ red in section, and has power type. 4. The internal characteristics: Polygonum multiflorum has hetero-vascular bundle and lignification of cork layer is progressive. In the other hand, Cynanchum wilfordii has not hetero-vascular bundle, and lignification of cork layer is weak. Conclusion: In the future, many fundamental study such as how to discriminate between Polygoni Multiflori Radix and Cynanchi Wilfordii Radix in origin and efficacy will be necessary. Also the standard of discrimination must be specific and distinct in that several kinds of fo-ti has been traded. It is considered the results of this study will be furnish κ I the basis Lo succeeding studies and it is needed to extensive comparative study for the same genus-degree of relatedness.

  • PDF

Grazing Characteristics of Native Snail Cipangopaludina chinensis malleata on the Hibernal Diatom Bloom in Eutrophic Lake and Stream (저온기 부영양 수계의 규조발생에 대한 한국산 논우렁이의 섭식특성)

  • Yoo, Young-Hun;Kim, Baik-Ho;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.338-347
    • /
    • 2008
  • Grazing rate (GR) and feces production (FP) of freshwater snail Cipangopaludina chinensis malleata on two hibernal diatom communities were examined in a laboratory. Snail with the similar size (4.2$\sim$5.8 cm) were collected from the Gunsan and Okgu district (Jeonbuk), transferred to the artificial management system in laboratory, and starved for 3 day before the experiment. The feeding experiments were conducted at various conditions such as passage of time (0, 1, 4 and 7 hr), snail density (0.0, 0.5, 1.0, 2.0 and 4.0 ind. $L^{-1}$) and kinds of prey (cold lake and stream water). One prey used in this study is the water of Lake Ilgam, the other is that of Han river. Lake Ilgam water was dominated by Synedra ulna (69.1%) and Scenedesmus sp. (6.6%), while Han river was by Asterionella formosa (69.4%) and Diatoma vulgare (27.7%). With the increment of snail density and time, the Chl-a concentration of two experimental waters were clearly decreased. Chl-a of Han river rapidly was decreased after 1 hour of snail treatment, while that of Ilgam lake was decreased after 4 hour. On the passage of time, a highest GR (1.94 L $g^{-1}\;h^{-1}$) showed at 1 hr, and then, decreased gradually to 0.04 L $g^{-1}\;h^{-1}$ by 7 hr. The highest FP (0.11 mg $L^{-1}$) showed at 7 hr. These results indicate that native snail Cipangopaludina chinensis malleata may be applied as a potential bio-filter to control diatom blooms in the cold lake and stream.

Assessment of New Algicide Thiazolidinedione (TD49) for the Control of Marine Red Tide Organisms (해양적조생물제어를 위한 살조물질 Thiazolidinedione 유도체(TD49) 평가)

  • Baek, Seung-Ho;Jang, Min-Chul;Joo, Hae-Mi;Son, Moon-Ho;Cho, Hoon;Kim, Young-Ok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • Worldwide development of harmful algal blooms causes serious problem for public health and fisheries industries. To evaluate the algicidal impact on the harmful algae bloom species in aquatic ecosystems of coast, a new algicide thiazolidinedione derivative (TD49) were tentatively examined in the growth stages (i.e., lag, logarithmic and stationary phase) of rapidophyceae $Heterosigma$ $akashiwo$, $Chattonella$ $marina$ and $Chattonella$ sp..Three strains could easily destroy in the lag phase due to relatively weak cell walls than those of the logarithmic and stationary phase. It is thought that inoculation of TD49 substances into initial or developmental natural blooms with a threshold concentration ($2{\mu}M$) can maximize the algicidal activity. Also, bio-chemical assays revealed that the algicidal substances from all culture strains were likely to be extracellular substances because those cells have easily destroyed in cell walls. On the other hand, natural zooplankton communities were influenced within the exposure experiments of $2{\mu}M$, which is showed the maximum algcidal activity of tested organisms. These results indicate that although the TD49 substance is potential agents for the control of $H.$ $akashiwo$, $C.$ $marina$ and $Chattonella$ sp. in the enclosed eutrophic bay and coastal water, more detailed research of acute toxicity effect on high trophic organism in marine ecosystems need to be conducted.

Analysis of influence on water quality and harmful algal blooms due to weir gate control in the Nakdong River, Geum River, and Yeongsan River (낙동강, 금강 및 영산강 가동보 운영이 수질 및 녹조현상에 미치는 영향 분석)

  • Seo, Dongil;Kim, Jaeyoung;Kim, Jinsoo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.877-887
    • /
    • 2020
  • A 3-Dimensional hydrodynamic and water quality model was applied to evaluate the effects of weir gate operations on water quality and harmful algal bloom (HAB) occurrences at selected locations in the Nakdong River, Geum River, and Yeongsan River. For the Geum River and Yeongsan River, when the gates are left open, annual and summer Chl-a and HABs were decreased at upstream locations, Sejong Weir and Seungchon Weir, but summer average concentrations of Chl-a and HABs were increased at downstream locations, Baekje Weir and Juksan Weir. For the open scenario, the reduced hydraulic residence time in the upper stream areas of the Geum River and Yeongsan River would allow less available time for nutrient consumption that would result in higher dissolved inorganic phosphorus concentrations followed by higher algal growth in the downstream areas. However, in the case of the Nakdong River, both annual and summer Chl-a and HABs were increased in all locations for the open scenario. This condition seems to be resulted in due to increased light availability by reduced water depths. Changes in Chl-a and HABs occurrences due to the water gate control in the study sites are different due to differences in physical, chemical, and biological conditions in each location.

Effects of Water Temperature, Salinity and Irradiance on the Growth of Harmful Dinoflagellate Cochlodinium polykrikoides Margelef isolated from South Sea of Korea in 2008 (2008년 한국 남해안에서 분리한 유해 와편모조류 Cochlodinium polykrikoides Margelef의 성장에 미치는 수온, 염분 그리고 광조건의 영향)

  • Oh, Seok-Jin;Kim, Chang-Hoon;Kwon, Hyeong-Kyu;Yang, Han-Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.715-722
    • /
    • 2010
  • The effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margelef isolated from the South Sea of Korea were examined in the laboratory. Growth was examined under the following combinations of temperature and salinity: 15, 20, 25 and $30^{\circ}C$, and 15, 20, 25, 30 and 35 psu at a constant irradiance of $180\;{\mu}mol/m^2/s$. No growth was observed with a temperature of $15^{\circ}C$ and a salinitiy of 15 psu. Moderate growth rates of more than 0.30 /day were obtained at $25^{\circ}C$ with salinities of 25.35 psu. These values are similar to in situ observations for this species. The maximum growth rate, 0.35 /day, was obtained at $25^{\circ}C$ and 30 psu. In light experiments, cell growth of C. polykrikoides was conducted with constant temperature ($20^{\circ}C$) and salinity (30 psu) under light photon flux densities (PFD) of 10, 25, 50, 70, 100, 150, 250 and $350\;{\mu}mol/m^2/s$. C. polykrikoides did not grow at $10\;{\mu}mol/m^2/s$. Cell growth was observed at irradiance values of $25\;{\mu}mol/m^2/s$ and above. The irradiance-growth curve was described as ${\mu}=0.30{\cdot}(I-15.27)/(I+27.22)$, (r=0.99). This suggests a compensation PFD of $15.27\;{\mu}mol/m^2/s$ and a maximum growth rate of 0.30 /day. In conclusion, C. polykrikoides prefers high salinity, temperature and irradiance in summer in Korea. These results provide important information for understanding the mechanism of C. polykrikoides blooms and developing technology to predict blooms of this organism in the field.

Eutrophication and Seasonal Variation of Water Quality in Masan-Jinhae Bay (마산-진해만의 수질 부영양화 및 계절 변동)

  • Cho, Kyung-Je;Choi, Man-Young;Kwak, Seung-Kook;Im, Sung-Ho;Kim, Dae-Yun;Park, Jong-Gyu;Kim, Young-Eui
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.193-202
    • /
    • 1998
  • Water quality of Masan-Jinhae Bay was monitored from January 1996 to August 1997. The monitoring focused on the spatial and vertical gradients and seasonal changes of eutrophication parameters such as nutrients, DO and water transparency. Flagellate phytoplanktons persistently bloomed from April to October with monospecific or mixed algal blooms and dynamic algal successions were observed in this area. Algal blooms were highly correlated with salinity drops and made the water less transparent. Stratification of oxygen content was persistent through summer and oligo-oxygenation was developed in the bottom waters. Nutrient gradients were consistently maintained through the depth in summer and through spatial distribution from inner Masan Bay to outer Jinhae Bay in winter. Except the rainfall seasons, water quality was under the influence of the waste waters discharged from watershed around the Masan Bay. The waste waters would act as the primary factor for the water quality deterioration of the bay. Literature data for eutrophication were gathered and analyzed to review the water quality trends of the Masan and Jinhae bays since 1970. Annual mean COD and phosphate concentration consistently increased from 1975 to 1990 and decreased or dropped after 1991. The sediment of inner part of Masan Bay was dredged from 1991 to 1994 as a decontamination process and it is assumed that the dredging has weakened more or less the deterioration trend of the water quality of the bay.

  • PDF

Exclusive correlation analysis for algae and environmental factors in weirs of four major rivers in South Korea (4대강 주요지점에서의 조류 발생인자의 배타적 상관성분석에 대한 연구)

  • Lee, Eun Hyung;Kim, Yeonhwa;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • Algal blooms not only destroy fish habitats but also diminish biological diversity of ecosystem which results into water quality deterioration of 4 major rivers in South Korea. The relationship between algal bloom and environmental factors had been analyzed through the cross-correlation function between concentration of chlorophyll a and other environmental factors. However, time series of cross-correlations can be affected by the stochastic structure such auto-correlated feature of other controllers. In order to remove external effect in the correlation analysis, the pre-whitening procedure was implemented into the cross correlation analysis. The modeling process is consisted of a series of procedure (e.g., model identification, parameter estimation, and diagnostic checking of selected models). This study provides the exclusive correlation relationship between algae concentration and other environmental factors. The difference between the conventional correlation using raw data and that of pre-whitened series was discussed. The process implemented in this paper is useful not only to identify exclusive environmental variables to model Chl-a concentration but also in further extensive application to configure causality in the environment.

Three-dimensional Algal Dynamics Modeling Study in Lake Euiam Based on Limited Monitoring Data (제한된 측정 자료 기반 의암호 3차원 조류 예측 모델링 연구)

  • Choi, Jungkyu;Min, Joong-Hyuk;Kim, Deok-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.181-195
    • /
    • 2015
  • Algal blooms in lakes are one of major environmental issues in Korea. A three-dimensional, hydrodynamic and water quality model was developed and tested in Lake Euiam to assess the performance and limitations of numerical modeling with multiple algal groups using field data commonly collected for algal management. In this study, EFDC was adopted as the basic model framework. Simulated vertical profiles of water temperature, dissolved oxygen and nutrients monitored at five water quality monitoring stations from March to October 2013, which are closely related to algal dynamics simulation, showed good agreement with those of observed data. The overall spatio-temporal variations of three algal groups were reasonably simulated against the chlorophyll-a levels of those estimated from the limited monitoring data (chlorophyll-a level and cell numbers of algal species) with the RMSEs ranging from 2.6 to $17.5mg/m^3$. Also, note that $PO_4-P$ level in the water column was a key limiting factor controlling the growth of three algal groups during most of simulation period. However, the algal modeling results were not fully attainable to the levels of observation during short periods of time showing abrupt increase in algae throughout the lake. In particular, the green algae/cyanobacteria and diatom simulations were underestimated in late June to early July and early October, respectively. The results shows that better understanding of internal algal processes, neglected in most algal modeling studies, is necessary to predict the sudden algal blooms more accurately because the concentrations of external $PO_4-P$ and specific algal groups originated from the tributaries (mainly, dam water releases) during the periods were too low to fully capture the sharp rise of internal algal levels. In this respect, this study suggests that future modeling efforts should be focused on the quantification of internal cycling processes including vertical movement of algal species with respect to changes in environmental conditions to enhance the modeling performance on complex algal dynamics.