• Title/Summary/Keyword: blood metabolites

Search Result 359, Processing Time 0.031 seconds

Gut microbiota-mediated pharmacokinetics of ginseng saponins

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.255-263
    • /
    • 2018
  • Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.

Acute cocaine intoxication in a body packer

  • Park, Mee-Jung;Lim, Mi-Ae;Chung, Hee-Sun
    • Analytical Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.103-106
    • /
    • 2006
  • A 35-year-old Perubian who suffered from grand mal seizures died in the aircraft on his way from the United States to Hongkong via Incheon international airport of Korea. While performing the autopsy, 115 packs made with double layer of transparent film and black plastic bag containing cocaine were found in the ileum and large intestine. Among of them, 3 packs were ruptured. To determine the concentration of cocaine and its metabolites, blood, urine, bile, liver, spleen, heart, kidney, brain and gastric contents were taken and toxicological analysis was performed. Gas chromatography/mass spectrometry (GC/MS) following liquid-phase extraction using chloroform:isopropanol (=9:1) and derivatization with bis(trimethylsilyl)-trifluoroacetamide (contains 1% trimethylchlorosilane) was performed. High levels of cocaine, benzoylecgonine (BE) and ecgonine methylester (EME) were found in the postmortem blood (0.96, 3.09 and $5.59{\mu}g/mL$) and urine (32.85, 145.35 and $53.17{\mu}g/mL$), respectively. Cocaine and its metabolites were also detected in all other biological specimen.

Estimation of Pork Quality Traits Using Exsanguination Blood and Postmortem Muscle Metabolites

  • Choe, J.H.;Choi, M.H.;Ryu, Y.C.;Go, G.W.;Choi, Y.M.;Lee, S.H.;Lim, K.S.;Lee, E.A.;Kang, J.H.;Hong, K.C.;Kim, B.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.862-869
    • /
    • 2015
  • The current study was designed to estimate the pork quality traits using metabolites from exsanguination blood and postmortem muscle simultaneously under the Korean standard pre- and post-slaughter conditions. A total of 111 Yorkshire (pure breed and castrated male) pigs were evaluated under the Korean standard conditions. Measurements were taken of the levels of blood glucose and lactate at exsanguination, and muscle glycogen and lactate content at 45 min and 24 h postmortem. Certain pork quality traits were also evaluated. Correlation analysis and multiple regression analysis including stepwise regression were performed. Exsanguination blood glucose and lactate levels were positively correlated with each other, negatively related to postmortem muscle glycogen content and positively associated with postmortem muscle lactate content. A rapid and extended postmortem glycolysis was associated with high levels of blood glucose and lactate, with high muscle lactate content, and with low muscle glycogen content during postmortem. In addition, these were also correlated with paler meat color and reduced water holding capacity. The results of multiple regression analyses also showed that metabolites in exsanguination blood and postmortem muscle explained variations in pork quality traits. Especially, levels of blood glucose and lactate and content of muscle glycogen at early postmortem were significantly associated with an elevated early glycolytic rate. Furthermore, muscle lactate content at 24 h postmortem alone accounted for a considerable portion of the variation in pork quality traits. Based on these results, the current study confirmed that the main factor influencing pork quality traits is the ultimate lactate content in muscle via postmortem glycolysis, and that levels of blood glucose and lactate at exsanguination and contents of muscle glycogen and lactate at postmortem can explain a large portion of the variation in pork quality even under the standard slaughter conditions.

The Serum or Urinary Levels of Cyclohexane Metabolites in Liver Damaged Rats

  • Joh Hyun-Sung
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.241-247
    • /
    • 2006
  • To evaluate an effect of pathological liver damage on the cyclohexane (CH) metabolism, rats were pretreated with 50% carbon tetrachloride $(CCl_4)$ dissolved in olive oil (0.1ml/100g body weight) 10 or 17 times intraperitoneally at intervals of every other day. To these liver damaged animals, CH (a single dose of 1.56g/kg body weight, i.p.) was administered at 48hr after the last injection of $CCl_4$. The CH metabolites; cyclohexanol (CH-ol), cyclohexane-l,2-diol (CH-l,2-diol) and cyclohexane-l,4-diol (CH-l,4-diol) and cyclohexanone (CH-one) were detected in the urine of CH treated rats. After CH treatment, the serum levels of CH-ol and CH-one were remarkably increased at 4 hr and then decreased at 8hr in normal group. Whereas in liver damaged rats, these CH metabolites were higher at 8hr than at 4hr. The excretion rate of CH metabolites trom serum into urine was more decreased in liver damaged animals than normal group, with the levels of excretion rate being lower in $CCl_4$ 17 times injected animals than 10 times injected ones. It was interesting that the urinary concentration of CH metabolites was generally more increased in liver damaged animals than normal ones, and the increasing rate was higher in $CCl_4$ 17 times injected rats than 10 times injected ones. Taken all together, it is assumed that reduced urinary excretion rate of CH metabolites in liver damaged rats might be resulted from deteriorated hepatic and renal blood flow, and an increased urinary excretion amount of CH metabolites in liver damaged rats might be caused by reduced expiration amount of the metabolites due to lung damage.

  • PDF

Effects of Using Monensin and Different Levels of Crude Protein on Milk Production, Blood Metabolites and Digestion of Dairy Cows

  • Ghorbani, B.;Ghoorchi, T.;Amanlou, H.;Zerehdaran, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.65-72
    • /
    • 2011
  • Twenty-four Holstein dairy cows were used to evaluate the single and combined effects of different levels of crude protein (CP) and monensin treatment during early lactation on blood metabolites, milk yield and digestion of dairy cows. The experiment was designed as a completely randomized block with a $3{\times}2$ factorial arrangement of treatments. The factors were three concentrations of CP supplement (19.5, 21.4, and 23.4% of dry matter) and two levels of monensin (0 and 350 mg per cow per day). The experiment consisted of three phases and each phase was 3 wk in length. Monensin did not affect milk yield, lactose, solids-non-fat (SNF), blood glucose, triglyceride and DMI, but increased blood cholesterol, blood urea nitrogen (BUN), insulin and reduced blood ${\beta}$-hydroxybutyrate (BHBA), milk fat and protein percentage. Monensin premix significantly decreased rumen ammonia, but rumen pH and microbial protein synthesis were not affected by monensin treatment. Increasing dietary CP improved milk and protein production, but did not alter the other components of milk. Digestibility of NDF, ADF, CP were improved by increasing dietary CP. Increasing dietary CP from 19.5 to 21.4% had no significant effect on ruminal ammonia, but increasing CP to 23.4% significantly increased ruminal ammonia. There was a linear relationship between level of crude protein in the diet and volume of urine excretion. Microbial protein synthesis was affected by increasing CP level; in this way maximum protein synthesis was achieved at 23.4% CP.

Effect of Different Degradable Protein and Starch Sources on the Blood Metabolites and Rumen Biochemical Profile of Early Weaned Crossbred Calves

  • Pattanaik, A.K.;Sastry, V.R.B.;Katiyar, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.728-734
    • /
    • 1999
  • Thirty new born crossbred (Bos taurus${\times}$Bos indicus) calves, divided randomly in a $3{\times}2$ factorial design, were fed calf starters containing one of three protein sources i.e., groundnut cake (GN), cottonseed meal (CS) and meat and bone meal (MB) along with either raw (M) or gelatinized maize (MG) for 90d. Milk was fed upto 56d of age. Green oats and respective calf starters were offered from 14d of age onwards ad lib. Clinical profile of serum suggested significantly (p<0.05) higher albumin and lower alanine aminotransferase activity due to CS feeding. Alklaine phosphatase activity varied significantly (p<0.05) among dietary treatments showing interaction between protein and starch sources. Inclusion of gelatinized maize resulted in significantly higher concentration of serum globulin (p<0.05) and alkaline phosphatase activity (p<0.01). reduced (p<0.05) ruminal pH was accompanied by a significant decrease (p<0.01) in $NH_3-N$ concentration in the strained rumen liquor (SRL) of MG fed calves. Ruminal amylase activity was lower (p<0.05) on MG diets. Alanine aminotransferase activity in the rumen exhibited a significant (p<0.01) interaction between protein and starch sources. While feeding of CS significantly (p<0.01) reduced alanine aminotransferase activity, inclusion of thermally processed maize reduced (p<0.01) both aspartate and alanine aminotransferase activities in the rumen. The overall blood picture was similar among treatments, whereas rumen metabolites especially enzyme activities, seems to be altered with source of degradable protein an starch.

Impact of different levels of lactose and total solids of the liquid diet on calf performance, health, and blood metabolites

  • Gercino Ferreira Virginio Junior;Cecile Anna Jeanne Duranton;Marilia Ribeiro de Paula;Carla Maris Machado Bittar
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1031-1040
    • /
    • 2024
  • Objective: This study aimed to evaluate the effect of feeding milk replacer (MR) with varying levels of lactose and the increased supply of total solids (from 750 to 960 g/d) on performance, blood metabolites, and health of Holstein male calves during the preweaning period. Methods: Forty newborn Holstein calves (10 per treatment) were blocked according to birth weight and date of birth and distributed in a randomized block design to different liquid diets: Whole milk powder (WMP) diluted to 125 g/L solids; MR with 48% lactose (48L), diluted to 125 g/L solids; MR with 53% lactose (53L), diluted to 125 g/L solids; 53L MR corrected to 160 g/L solids (16TS) by the inclusion of a solid corrector. Calves were individually housed in wood hutches, fed 6 L/d of the liquid diet, and had free water and starter concentrate access. The study lasted 56 days. Results: Liquid diet intake was higher for calves fed 16TS than for other treatments. Calves fed 16TS presented higher protein and fat intake, followed by those fed WMP and the 48L or 53L MRs. Lactose intake was higher for 16TS-fed calves, followed by 53L, 48L, and WMP-fed calves. Starter and total dry matter intake did not differ among liquid diets. The average daily gain was higher for 16TS than 48L-fed calves, with the other treatments being intermediary. The lowest feed efficiency was observed for calves fed 48L. No effects on health were observed, as well as on selected blood metabolites, except for albumin concentration, which was higher for calves fed 16TS and WMP. Conclusion: Higher total solids content (160 g/L) in MR increases nutrient intake and consequently improves the performance of dairy calves. Feeding MRs with levels of lactose up to 53% of the DM had no deleterious effect on the performance or health of the calves.

Effects of Ambient Temperature on Growth Performance, Blood Metabolites, and Immune Cell Populations in Korean Cattle Steers

  • Kang, H.J.;Lee, I.K.;Piao, M.Y.;Gu, M.J.;Yun, C.H.;Kim, H.J.;Kim, K.H.;Baik, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.436-443
    • /
    • 2016
  • Exposure to cold may affect growth performance in accordance with the metabolic and immunological activities of animals. We evaluated whether ambient temperature affects growth performance, blood metabolites, and immune cell populations in Korean cattle. Eighteen Korean cattle steers with a mean age of 10 months and a mean weight of 277 kg were used. All steers were fed a growing stage-concentrate diet at a rate of 1.5% of body weight and Timothy hay ad libitum for 8 weeks. Experimental period 1 (P1) was for four weeks from March 7 to April 3 and period 2 (P2) was four weeks from April 4 to May 1. Mean ($8.7^{\circ}C$) and minimum ($1.0^{\circ}C$) indoor ambient temperatures during P1 were lower (p<0.001) than those ($13.0^{\circ}C$ and $6.2^{\circ}C$, respectively) during P2. Daily dry matter feed intake in both the concentrate diet and forage groups was higher (p<0.001) during P2 than P1. Average daily weight gain was higher (p<0.001) during P2 (1.38 kg/d) than P1 (1.13 kg/d). Feed efficiency during P2 was higher (p = 0.015) than P1. Blood was collected three times; on March 7, April 4, and May 2. Nonesterified fatty acids (NEFA) were higher on March 7 than April 4 and May 2. Blood cortisol, glucose, and triglyceride concentrations did not differ among months. Blood CD4+, CD8+, and CD4+CD25+ T cell percentages were higher, while CD8+CD25+ T cell percentage was lower, during the colder month of March than during May, suggesting that ambient temperature affects blood T cell populations. In conclusion, colder ambient temperature decreased growth and feed efficiency in Korean cattle steers. The higher circulating NEFA concentrations observed in March compared to April suggest that lipolysis may occur at colder ambient temperatures to generate heat and maintain body temperature, resulting in lower feed efficiency in March.

Bioavailability of Fermented Korean Red Ginseng

  • Lee, Hyun-Jung;Jung, Eun-Young;Lee, Hyun-Sun;Kim, Bong-Gwan;Kim, Jeong-Hoon;Yoon, Taek-Joon;Oh, Sung-Hoon;Suh, Hyung-Joo
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.3
    • /
    • pp.201-207
    • /
    • 2009
  • In an effort to improve ginsenoside bioavailability, the ginsenosides of fermented red ginseng were examined with respect to bioavailability and physiological activity. The results showed that the fermented red ginseng (FRG) had a high level of ginsenoside metabolites. The total ginsenoside contents in non-fermented red ginseng (NFRG) and FRG were 35715.2 ${\mu}g$/mL and 34822.9 ${\mu}g$/mL, respectively. However, RFG had a higher content (14914.3 ${\mu}g$/mL) of ginsenoside metabolites (Rg3, Rg5, Rk1, CK, Rh1, F2, and Rg2) compared to NFRG (5697.9 ${\mu}g$/mL). The skin permeability of RFG was higher than that of NFRG using Franz diffusion cells. Particularly, after 5 hr, the skin permeability of RFG was significantly (p<0.05) higher than that of NFRG. Using everted instestinal sacs of rats, RFG showed a high transport level (10.3 mg of polyphenols/g sac) compared to NFRG (6.67 of mg of polyphenols/g sac) after 1 hr. After oral administration of NFRG and FRG to rats, serum concentrations were determined by HPLC. Peak concentrations of Rk1, Rh1, Rc, and Rg5 were approximately 1.64, 2.35, 1.13, and 1.25-fold higher, respectively, for FRG than for NFRG. Furthermore, Rk1, Rh1, and Rg5 increased more rapidly in the blood by the oral administration of FRG versus NFRG. FRG had dramatically improved bioavailability compared to NFRG as indicated by skin permeation, intestinal permeability, and ginsenoside levels in the blood. The significantly greater bioavailability of FRG may have been due to the transformation of its ginsenosides by fermentation to more easily absorbable forms (ginsenoside metabolites).