• Title/Summary/Keyword: blocking artefact

Search Result 3, Processing Time 0.016 seconds

Blocking artefact noise reduction using block division (블록 나눔을 사용한 블로킹 아티팩트 잡음 감소)

  • Cha, Seong Won;Shin, Jae Ho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.47-53
    • /
    • 2008
  • Blocking artefact noise is necessarily happened in compressed images using block-coded algorithms such as JPEC compressing algorithm. This noise is more recognizable especially in highly compressed images. In this paper, an algorithm is presented for reduction of blocking artefact noise using block division. Furthermore, we also mention about the median filter which is often used in image processing.

A study on removing blocking artefact noise for highly compressed images (고압축 영상의 블로킹 아티팩트 잡음 제거)

  • Cha, Seong-Won;Shin, Jae-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.2
    • /
    • pp.153-158
    • /
    • 2008
  • Blocking artefact noise is necessarily happened in compressed images using block-coded algorithms such as JPEC compressing algorithm. This noise is more recognizable especially in highly compressed images. In this paper, an algorithm is presented for reduction of blocking artefact noise using wavelet. Furthermore, we also mention about the median filter which is often used in image processing. Moreover, we compared the algorithm in this paper with the median filter, and its result was much better than the median filter both visually and numerically.

  • PDF

Reducing Decoding Complexity by Improving Motion Field Using Bicubic and Lanczos Interpolation Techniques in Wyner-Ziv Video Coding

  • Widyantara, I Made O.;Wirawan, Wirawan;Hendrantoro, Gamantyo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2351-2369
    • /
    • 2012
  • This paper describes interpolation method of motion field in the Wyner-Ziv video coding (WZVC) based on Expectation-Maximization (EM) algorithm. In the EM algorithm, the estimated motion field distribution is calculated on a block-by-block basis. Each pixel in the block shares similar probability distribution, producing an undesired blocking artefact on the pixel-based motion field. The proposed interpolation techniques are Bicubic and Lanczos which successively use 16 and 32 neighborhood probability distributions of block-based motion field for one pixel in k-by-k block on pixel-based motion field. EM-based WZVC codec updates the estimated probability distribution on block-based motion field, and interpolates it to pixel resolution. This is required to generate higher-quality soft side information (SI) such that the decoding algorithm is able to make syndrome estimation more quickly. Our experiments showed that the proposed interpolation methods have the capability to reduce EM-based WZVC decoding complexity with small increment of bit rate.