• Title/Summary/Keyword: blockage

Search Result 551, Processing Time 0.031 seconds

An Experimental Verification on the Efficiency of Geosynthetics on Crushed Stone Layer (쇄석배수층에 적용된 토목섬유의 효율성에 대한 실험적 검증)

  • Park, Min-Cheol;Im, Eun-Sang;Kim, Jae-Hong;Han, Heui-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.17-27
    • /
    • 2013
  • This study is to prove the efficiency of geo-synthetics on the crushed stone layer by experiments. The strength of PET mat as reinforcing soft ground was verified through the loading experiments. Also, PP mat was used to protect the blockage of crushed stone layer by the filled soil, whose efficiency was examined according to loading and infiltration conditions. The crushed stones were penetrated into clay layer if the PET mat was removed, which was verified by loading experiments. In addition, the cohesioness of soil without PP mat made the blockage of stone layer easily, which reduced the infiltration capacity by about 98%.

Experimental Investigation on Combustion Performance of a Pintle Injector Engine with Double-row Rectangular Slot (핀틀 인젝터 Rectangular Slot 2열 형상에 따른 연소성능에 관한 연구)

  • Ryu, Hobin;Yu, Isang;Kim, Wanchan;Shin, Donghae;Ko, Youngsung;Kim, Seonjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.25-33
    • /
    • 2017
  • In this study, combustion tests were performed to investigate combustion performance of a pintle injector engine with double row rectangular slot which uses kerosene and liquid oxygens as propellants. The double row rectangular slot was designed to improve the combustion performance of a pintle engine with a single row and the blockage factor was changed from 0.7 to 1.0. The main design parameters of the double row were distance between rows, area ratio and aspect ratio. The characteristic velocity efficiency was measured from 92.4 to 96.9 percentage for double row but 86.8 percentage for single row. It showed the highest combustion performance at the BF 0.85.

Exploiting Multi-Hop Relaying to Overcome Blockage in Directional mmWave Small Cells

  • Niu, Yong;Gao, Chuhan;Li, Yong;Su, Li;Jin, Depeng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.364-374
    • /
    • 2016
  • With vast amounts of spectrum available in the millimeter wave (mmWave) band, small cells at mmWave frequencies densely deployed underlying the conventional homogeneous macrocell network have gained considerable interest from academia, industry, and standards bodies. Due to high propagation loss at higher frequencies, mmWave communications are inherently directional, and concurrent transmissions (spatial reuse) under low inter-link interference can be enabled to significantly improve network capacity. On the other hand, mmWave links are easily blocked by obstacles such as human body and furniture. In this paper, we develop a multi-hop relaying transmission (MHRT) scheme to steer blocked flows around obstacles by establishing multi-hop relay paths. In MHRT, a relay path selection algorithm is proposed to establish relay paths for blocked flows for better use of concurrent transmissions. After relay path selection, we use a multi-hop transmission scheduling algorithm to compute near-optimal schedules by fully exploiting the spatial reuse. Through extensive simulations under various traffic patterns and channel conditions, we demonstrate MHRT achieves superior performance in terms of network throughput and connection robustness compared with other existing protocols, especially under serious blockage conditions. The performance ofMHRT with different hop limitations is also simulated and analyzed for a better choice of the maximum hop number in practice.

The Accuracy of Hysterosalpingography for Evaluating Female Infertility (불임 검사시 자궁난관 조영술의 진단 정확도)

  • Park, Joon Cheol;Kim, Jong In;Rhee, Jeong Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.223-230
    • /
    • 2005
  • Objective: This study was performed to evaluate the accuracy of hysterosalpingography (HSG) for evaluating female infertility patients by comparison with hysteroscopic and laparoscopic examination. Methods and Material: Total 219 infertile patients were retrospectively analyzed between January 1, 2002 and December 31, 2003. Ninety seven patients (44.3%) were primary infertility, 122 patients (55.7%) were secondary infertility. We performed hysteroscopic and laparoscopic examination on next cycle when HSG revealed any abnormal finding, and 3~6 cycles later if HSG was normal. Results: The accuracy of HSG was 65.2% compared with hysteroscopic examination (sensitivity 88.4%, specificity 46.4%, false positive rate 53.6%, false negative rate 11.6%). The most common abnormal finding of hysteroscopy was uterine synechia (67.4%) followed by endometrial polyp, uterine anomaly (e.g. uterine septum), endometrial hyperplasia. Compared with laparoscopic examination, the accuracy of HSG was 76.9% (sensitivity 98.9%, specificity 70.6%, +LR 3.36, -LR 0.02). The positive predictive value of normal patent tube was excellent (99.6%) but that of proximal tubal blockage was only 46.7%. The unilateral tubal obstruction of HSG was poor accuracy (+LR 3.85 -LR 0.68) and 70% of those was patent by laparoscopic examination. Laparoscopic examination also revealed that 53% of patients had peritubal adhesion and 37% of patients has additional pelvic findings, especially endometriosis. Among the patients had normal HSG, 53.5% patients with normal ultrasonography was diagnosed endometriosis (25.6% of them had endometriosis stage I-II). Conclusion: Normal HSG shows a high negative predictive value. Nevertheless, the incidence of associated pelvic disease in the normal HSG group is high enough to warrant diagnostic laparoscopy if nonsurgical treatment is unsuccessful. Because HSG has poor accuracy in predicting distal tubal blockage and peritubal adhesion, and poor positive predictive value of proximal tubal blockage, laparoscopic examination could be considered in abnormal HSG group.

The Screen Efficiency Improving Effect Analysis by the Screen Motion Characteristic Analysis Applying Blockage Prevention Spring (막힘 방지 스프링 적용 스크린 운동 특성 분석을 통한 스크린 효율 개선 효과 분석)

  • Han-Sol Lee;Myouing-yuol Yu;Hoon Lee
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.36-43
    • /
    • 2022
  • The general screen used to separate the particle size of recycled aggregate has restrictions when dealing with moisturized materials because of the blockage phenomenon. Therefore, in this study, to improve the separation efficiency of the conventional screen, the excellence of additional vibrating device based on spring was decided by a simulation experiment based on the discrete element method (DEM). The motion characteristic was investigated by analyzing the displacement, amplitude, and strain angle based on the spring design. Further, the particle motion was simulated by applying spring motion. The material flow and separation efficiency of the screen applied spring were confirmed as 9.2 kg/s and 97 %, respectively. Consequently, the improvement in the screen applied with blockage prevention spring was confirmed by comparing with the conventional screen.

Accuracy Analysis using Assistant Sensor Integration on Various IMU during GPS Signal Blockage (GPS 신호 단절 상황에서 IMU 사양에 따른 보조센서 통합을 이용한 정확도 분석)

  • Lee, Won-Jin;Kwon, Jay-Hyoun;Lee, Jong-Ki;Han, Joong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • In this study, the performances of a medium grade IMU which is aimed for Mobile Mapping System and a low grade IMU for pedestrian navigation are analyzed through simulations under GPS signal blockage. In addition, an analysis on the accuracy improvement of barometer, electronic compass, or multi-sensor(combination of barometer and electronic compass) to correct medium grade or low grade IMU errors in the situation of GPS signal blockage is performed. With the medium grade IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 5m when the block time is over 30 seconds. When we correct IMU with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 60 seconds. In addition, barometer is more effective than the electronic compass when they are combined. In case of low grade IMU like MEMS IMU, the three dimensional positioning error from INS exceeds the demanded accuracy of 20m when the block time is over 15 seconds. When we correct INS with barometer, compass, or multi-sensor, however, the demanded accuracy is maintained up to 15 seconds in simulation results. On the contrary to medium grade IMU, electronic compass is more effective than the barometer in case of low velocity such as pedestrian navigation. It is expected that the analysis suggested a method to decrease position or attitude error using aided sensor integration when MMS or pedestrian navigation is operated under 1he environment of GPS signal blockage.

Effect of Flow Liners on Ship′s Wake Simulation in a Cavitation Tunnel (캐비테이션 터널에서의 반류분포 재현에 미치는 유동조절체의 영향)

  • Jin-Tae Lee;Young-Gi Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.66-75
    • /
    • 1993
  • Flow control devices, such as flow liners, are frequently introduced hi a cavitation tunnel in order to reduce the tunnel blockage effect, when a three-dimensional wake distribution is simulated using a complete ship model or a dummy model. In order to estimate the tunnel wall effect and to evaluate the effect of flow liners on the simulated wake distribution, a surface panel method is adopted for the calculation of the flow around a ship model and flow liners installed in a rectangular test section of a cavitation tunnel. Calculation results on the Sydney Express ship model show that the tunnel wall effect on the hull surface pressure distribution is negligible for less than 5% blockage and can be appreciable for more than 20% blockage. The flow liners accelerate the flow near the after body of the ship model, so that the pressure gradient there becomes more favorable and accordingly the boundary layer thickness would be reduced. Since the resulting wake distribution is assumed to resemble the full scale wake, flow liners can also be used to simulate an estimated full scale wake without modifying the ship model. Boundary layer calculation should be incorporated in order to correlate the calculated wake distribution with tole measured one.

  • PDF

Fouling Study with Binary Protein Mixtures in Microfilration (이성분계 단백질 혼합물의 미세막 분리공정에서 막오염에 관한 연구)

  • Ahn, Byung Hun;Moon, Dong Ju;Yoo, Kye Sang;Ho, Chia Chi
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.236-242
    • /
    • 2005
  • Membrane fouling by protein mixtures during microfiltration has been investigated for binary mixtures of bovine serum albumin (BSA), casein, lysozyme, pepsin, and ovalbumin. Filtration experiments were carried out using $0.2{\mu}m$ polycarbonate track-etched (PCTE) membrane in a stirred cell under constant transmembrane pressure (14 kPa) and concentration of hydrogen ion (pH=11) to study the effect of mixture composition on filtrate flux decline. Flux decline data were analyzed using a pore blockage-cake formation model developed recently. It was found that the model is in a good agreement with the experimental data. Fouling parameters such as the rate of pore blockage(${\alpha}$), the initial resistance of the protein deposit ($R_{po}$) and the increasing rate of the protein layer resistance(${\beta}$) were used to evaluate the rate of filtrate flow by membrane fouling in the binary mixture system. Generally, the trend of ${\alpha}$ is comparable with that of filtrate flux decline. It was also found that fast flux decreasing was observed over the binary mixture containing casein. The result is due to high value of the initial resistance of the protein deposit ($R_{po}$) over casein.