• Title/Summary/Keyword: block coefficient

Search Result 373, Processing Time 0.028 seconds

Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry (마이크로 무아레 간섭계를 이용한 초정밀 변형 측정)

  • Joo, Jin-Won;Kim, Han-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

A Study on the Dose Distribution of Various Field and Penumbra Shield in the Telecobalt-60 (코발트-60의 조사야(照射野) 변형(變形) 및 반음영(半陰影) 차폐(遮蔽)효과에 따른 선량분포(線量分布)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Hye-Kyong
    • Journal of radiological science and technology
    • /
    • v.8 no.2
    • /
    • pp.71-72
    • /
    • 1985
  • This study was performed on the dose distribution of various field size and the effect of penumbra shield in the telecobalt unit. The results obtained are as follows. 1. Errors of the light and ${\gamma}-ray$ field size was below the regulation as 0.52 percentage. 2. The coefficient of field area was increased with the larger field area, and this coefficient was showed the more difference in larger SSD. 3. The rectangular field areas, which were described by level of the same percentage depth does, were decreased with the more elongation factor. At the same elongation factor, the compensating factor was decreased with the larger field size. 4. The lead block or extension collimator was able to shield r-ray exposure of outside field size from 50 to 80 percentage. 5. On the matching adjacent fields, while the gap between beam edges are contacted, that overlapped beam edges indicated up to 140 percentage, and while the gap was 1 cm, it could be reduced to 90 Percentage. The lead-libocking on the overlapped area was more effective to lower dose, as 80 percentage in this case. 6. Percentage depth dose of various trimming field sizes were increased linearlly according to area 1 perimeter size, but the center split field size did not maintain linearlly.

  • PDF

Fabrication of Polymeric Optical Fiber Array (정밀 고분자 광섬유 어레이 제작 연구)

  • Cho, Sang-Uk;Jeong, Myung-Yung;Kim, Chang-Seok;Ahn, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.82-88
    • /
    • 2007
  • This work is to fabricate a precise optical fiber array using polymer composite for optical interconnection. Optical fiber array has to satisfy low optical loss requirement less than 0.4 dB according to temperature change. For this purpose, design criteria for an optical fiber array was derived. The coefficient of thermal expansion of silica particulate epoxy composites was affected by volume fraction of silica particles. And also, elastic modulus of silica particulate epoxy composites was affected by volume fraction of silica particles. To obtain the coefficients of thermal expansion below $10{\times}10E-6/^{\circ}C$ and elastic modulus more than 20 GPa , we chose the volume fraction more than 76%. Using silica particulate epoxy composites with the volume fraction 76%, 8-channel optical fiber array with dimensional tolerances below $1\;{\mu}m$ was manufactured by transfer molding technique using dies with the uniquely-designed core pin and precisely-machined zirconia ceramic V block. These optical fiber arrays showed optical loss variations within 0.4 dB under thermal cycling test and high temperature test.

The Effect of Hull Appendages on Maneuverability of Naval Ship by Sensitivity Analysis (민감도 해석을 통한 선체 부가물이 함정의 조종성능에 미치는 영향 분석)

  • Kim, Dae Hyuk;Rhee, Key-Pyo;Kim, Nakwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.154-161
    • /
    • 2014
  • Naval ships have hull appendages which are more exposed to the outside because of its small block coefficient compared with commercial ships. These exposed hull appendages like skeg, strut and shaft line affect the maneuverability of a ship. The effect of hull appendages has considered at initial design stage to estimate more accurate maneuverability. In this paper, sensitivity analysis is used to analyze the effect on maneuverability by hull appendages. 3 DOF maneuvering equations based on Mathematical Modelling Group (MMG) model are used and propeller & rudder model are modified to reflect the characteristics of twin propeller & twin rudder. Numerical maneuvering simulations (Turning test, Zig-zag test) for benchmark naval vessel, David Taylor Model Basin (DTMB) 5415 are performed. In every simulation, it is calculated that stability indices and maneuverability characteristics (Tactical Dia., Advance, 1st Overshoot, Time of complete cycle) with respect to the parameters (area times lift coefficient slope, attachment location) of hull appendages. As a result, two regression formulas are established. One is the relation of maneuverability characteristics and stability indices and the other is the relation of stability indices and hull appendages.

The Effect of Forebody Forms on the Ship Motion in Water of Finite Depth (유한(有限)깊이의 물에서의 선체운동(船體運動) -선수선형(船首船型)의 영향(影響)-)

  • J.H.,Hwang;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.11-16
    • /
    • 1976
  • The effect of the bow shape on the ship motion response in longitudinal regular waves of water of finite depth is investigated by employing the strip theory. The two-dimensional hydrodynamic forces(added mass and damping) were calculated by close-fit method for water of finite depth. The models for investigation are U and V bow ship forms of block coefficient 0.8 with constant after body which were used by Yourkov [2] and recently by Kim [3] for their deep water investigations. The following results are obtained by the present numerical experiments. (1) It is confirmed that the damping coefficient of the V-bow ship is greater than that of U-bow ship and in consquence the amplitude of heave and pitch of V-bow ship is smaller than that of U-bow ship among longitudinal regular head waves in water of finite depth (2) The merit of the V-bow ship on the motion damping is more significant in heave than in pitch, and is decreasing with the shallowness of water depth. (3) The change of bow form gives little effect on the wave exciting force and moment compared with the motion responce.

  • PDF

Friction and Wear Characteristics of PTFE-Polyimide Composite (PTFE-폴리이미드 복합 재료의 마찰과 마모 특성)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.28-34
    • /
    • 1995
  • PTFE has good mechanical and chemical stability at wide temperature range, and more over, shows a low value of friction coefficient. On the other hand, it shows cold flow and high wear rate. However, these short comings can be overcome by adding various fillers. In this experiment, PTFE and polyimide powder were mixed into composite and its tribological characteristics was investigated. 100% polyimide was also tested for comparison. The countefface material was a stainless steel (SUS304). Friction and wear tester of ring-on-block type was used at room temperature and under atmosphere. After the wear test, the worn surfaces were examined by optical microscope. The test results show that PTFE-polyimide composite generates. the wear transfer film on both sides of the friction surfaces, and, the friction coefficient and the wear rates are relatively low. 100% polyimide generated little wear transfer films, showed high friction and wear rates, and also showed some problems of vibration and noise. It even damaged the stainless steel countefface. It was concluded that 100% polyimide does not generate transfer film well because its shear resistanbe is high and it stickslips, thus, friction coefficients and wear rates are high. In case of PTFE-polyimide composite, on the other hand, transfer film containing sufficient PTFE adheres and remains on both wear surfaces well enough because PTFE has low shear resistance. Polyimide particles in the composite were proved to be able to bear normal load and does not show stick-slip because they are covered with transfer film containing much PTFE.

The effect of non-persistent joints on sliding direction of rock slopes

  • Sarfarazi, Vahab;Haeri, Hadi;Khaloo, Alireza
    • Computers and Concrete
    • /
    • v.17 no.6
    • /
    • pp.723-737
    • /
    • 2016
  • In this paper an approach was described for determination of direction of sliding block in rock slopes containing planar non-persistent open joints. For this study, several gypsum blocks containing planar non-persistent open joints with dimensions of $15{\times}15{\times}15cm$ were build. The rock bridges occupy 45, 90 and $135cm^2$ of total shear surface ($225cm^2$), and their configuration in shear plane were different. From each model, two similar blocks were prepared and were subjected to shearing under normal stresses of 3.33 and $7.77kg/cm^{-2}$. Based on the change in the configuration of rock-bridges, a factor called the Effective Joint Coefficient (EJC) was formulated, that is the ratio of the effective joint surface that is in front of the rock-bridge and the total shear surface. In general, the failure pattern is influenced by the EJC while shear strength is closely related to the failure pattern. It is observed that the propagation of wing tensile cracks or shear cracks depends on the EJC and the coalescence of wing cracks or shear cracks dominates the eventual failure pattern and determines the peak shear load of the rock specimens. So the EJC is a key factor to determine the sliding direction in rock slopes containing planar non-persistent open joints.

Modified Rectangular Stress Block for High Strength RC Columns to Axial Loads with Bidirectional Eccentricities (2축 편심 축력을 받는 고강도 콘크리트 기둥의 수정 등가응력블럭)

  • Yoo, Suk-Hyeong;Bahn, Byong-Youl;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.335-343
    • /
    • 2003
  • In the previous experimental study, it is verified that the ultimate strain of concrete (${\varepsilon}$$_{cu}$=0.003) and coefficient of equivalent stress block (${\beta}$$_1$) can be used for the analysis of RC beams under biaxial and uniaxial bending moment. However, the characteristics of stress distribution of non rectangular compressed area in the RC columns are different to those of rectangular compressed area. The properties of compressive stress distribution of concrete have minor effect on the pure bending moment such as beams, but for the columns subjected to combined axial load and biaxial bending moment, the properties of compressive stress distribution are influencing factors. Nevertheless, in ACI 318-99 code, the design tables for columns subjected to axial loads with bidirectional eccentricities are based on the parameters recommended for rectangular stress block(RSB) of rectangular compressed areas. In this study the characteristics of stress distribution through both angle and depth of neutral axis are observed and formulated rationally. And the modified parameters of rectangular stress block(MRSB) for non rectangular compressed area is proposed. And the computer program using MRSB for the biaxial bending analysis of RC columns is developed and the results of MRSB are compared to RSB and experimental results respectively.

Basic Research on Revetments Development of Erosion Protection for Coastline Creation of Hydrophilic Environment by Field Observation (현장관측에 의한 친환경 해안조성을 위한 침식방지 호안공 개발에 관한 기초적 연구)

  • Lee, Jong-Seok;Han, Jae-Myung
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.10
    • /
    • pp.983-993
    • /
    • 2008
  • In recent times, sea level increasing caused by abnormal weather and global warming, sea-sand dredging and complex development causes various kind of erosion damages onto the coastal area in the world. The various types of erosion control and protection methods are applied but there are no signs of fruitful effectiveness. The PC concrete protection block for shore protection structure is practically installed in globally but most of structures in the present day became villainous because of bad accessability. In this study, hydrophilic revetments for control and protection of coastline erosion will be developed in order to make up for a faculty of the shore erosion protection block with better accessibility and excellent protection ability. Experimental measurements were researched to insure for the capacity and facility on reflection coefficient, overtopping volume, and overtopping height characteristics of newly developed shore erosion protection block in model tests. As the result, hydraulic model tests show much excellent than the general step block. Field tests were carried out also to verify through vegetative test on an affinity and construction work test of control-protection on coastline erosion with actual utilization. In the latter case, deposition of sand accumulation occurred in fairly short time at the established reaches and then we can be confirmed to utilize for newly developed block as the revetments for control and protection of coastline erosion.

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1999.05a
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF