In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.
본 논문은 영상에서 숫자열을 검출하고 숫자열을 구성하고 있는 숫자들을 분할하여 숫자 인식 시스템을 위한 입력 숫자 영상을 생성하는 알고리즘을 제안하고 있다. 제안된 알고리즘은 블랍 검출을 통해 블랍화된 숫자열을 검출하고, 검출된 블랍 정보를 이용해 숫자열 영역을 지정하고, 숫자열 기울어짐을 보정한다. 그리고 제안된 알고리즘은 본 논문에서 새롭게 정의된 세 종류의 CPgraph을 이용해 숫자 기울어짐을 보정하고, 보정된 숫자열에서 숫자 분할을 위한 경계 지점을 결정한다. 일정 영역의 폰트 크기로 인쇄된 숫자열을 포함하는 영상 그룹과 필기체 숫자열을 포함하는 영상 그룹을 이용한 숫자 분할 실험에서 제안된 알고리즘 각 영상 그룹에서 100%와 90% 이상의 숫자들을 성공적으로 분할하고 있다.
Because the threshold technique using the histogram of intensity is the most attractive for segmentation in the sense of fast image processing, this paper defined the new function of inverse histogram of intensity and found out a threshold by means of it. The segmented errors are removed by regulating a scan size of blob coloring. Blob-coloring algorithm presented by [6] was reproved for good performance i.e., no change of feature in bolobs after blob coloring. The ratio of successful recognition was about 85 percents.
영상에서 배경을 제거하고 손을 분리하는 기술은 손 인식 연구에서 가장 먼저 수행되는 기술이며, 분리된 결과 영상의 성능에 따라 이후의 인식 단계의 성능이 결정되는 중요한 기술이다. 기존의 연구는 조명 및 배경의 변화에 취약하거나 다수의 사용자와 상호작용에 한계가 있었다. 본 논문에서는 컬러 영상과 깊이 영상을 혼용하여 손을 분리하는 기술을 제안한다. 먼저 입력된 컬러 영상을 이용하여 복잡한 환경에서도 정확하게 영역 채움을 위한 초기 위치를 설정하였다. 이 위치를 기준으로 영역 채움 연산을 위한 한계 영역을 재설정하여 조명 변화로 침식된 영역을 포함하도록 하고, 깊이 영상에서 영역 채움 연산을 수행함으로써 조명과 환경의 변화에도 강인하게 손의 영역을 분리하도록 하였다. 또한, 이렇게 분리된 손의 영역을 이용하여 실시간으로 피부 모델을 학습함으로써 조명 환경에 적응적으로 피부 모델을 갱신하여 보다 강인한 인식 성능을 얻을 수 있었다. 이를 다양한 조명 및 배경 환경에서 기존의 알고리즘과 비교 실험을 수행하여 강인한 인식 성능을 확인할 수 있었으며, 특히 역광 환경과 같이 조명 변화가 극심한 환경에서 강인한 성능을 보여주었다.
Accompanied by the rapid development of Computer Vision, Visual surveillance has achieved great evolution with more and more complicated processing. However there are still many problems to be resolved for robust and reliable visual surveillance, and the cast shadow occurring in motion detection process is one of them. Shadow pixels are often misclassified as object pixels so that they cause errors in localization, segmentation, tracking and classification of objects. This paper proposes a novel cast shadow removal method. As opposed to previous conventional methods, which considers pixel properties like intensity properties, color distortion, HSV color system, and etc., the proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the background scene. Then, the product of the outcomes of application determines whether the blob pixels in the foreground mask comes from object blob regions or shadow regions. The proposed method is simple but turns out practically very effective for Gaussian Mixture Model, which is verified through experiments.
영상 분할을 위한 클러스터링에서는 방대한 계산량과 전형적인 분할 오류가 중요한 문제점으로 지적되어 왔다. 본 연구에서는 이러한 문제들을 최소화하기 위한 새로운 기법을 제안한다. 마커-제어 유역변환(marker- controlled watershed transform)에서 마커는 영역 확장의 시작점이므로, 분할된 각 영역을 대표하는 성질을 가진다. 따라서 마커 화소로 제한하는 클러스터링으로 계산 복잡도를 줄일 수 있다. 제안한 기법에서는 가보 필터(gabor filter)의 질감 에너지에서 마커를 선택하고, FCM(fuzzy c-means) 클러스터링으로 마커의 군집을 형성하며, 유역변환에서 생성된 영역들을 마커의 군집정보를 이용하여 병합한다. Brodatz 영상 조합에 대한 성능 실험에서 클러스터링 특유의 얼룩(blob) 분할 오류를 현저하게 개선하였으며, 영상 분할 소요 시간 비교에서 기존의 FCM 클러스터링 알고리즘보다 소요 시간이 적었다. 또한, 전체적으로 일정한 분할 소요시간을 보여주었다.
본 논문은 GrabCut 알고리듬을 기반으로 적외선(infrared; IR) 영상에서 물체를 배경으로부터 분할하는 방법을 제안한다. GrabCut 알고리듬은 관심 있는 물체를 둘러싸는 윈도우가 필요하며, 이는 사용자가 설정한다. 그렇지만 이 알고리듬을 영상 시이퀀스에서 물체인식에 적용하려면 윈도우의 로케이션이 자동으로 결정되어야만 한다. 이를 위해서 본 논문에서는 Otsu 알고리듬으로 한 영상에서 관심은 있으나 알져지지 않는 물체를 적당히 분할하고 블랍 해석을 통해 윈도우를 자동으로 로케이션한다. 그랩 컷 일고리듬은 관심있는 물체와 배경의 확률분포를 추정해야한다. 이 경우에 관심 있는 물체의 확률분포는 자동으로 로케이션된 윈도우 내부의 화소들로부터 추정하고, 배경의 확률 분포는 물체의 윈도우를 둘러싸고 면적은 동일한 영역으로부터 추정한다. 다양한 IR 영상에 대한 분할 실험을 통해 제안한 분할 방법이 IR 영상의 분할에 적합함을 보이고, 기존의 IR 영상 분할 방법과의 비교 및 분석을 통해 제안 알고리듬이 우수한 분할 성능을 보임을 증명한다.
This paper describes an implementation method for the 'People Counting System' which detects and tracks moving people using a fixed single camera. This system proposes the method of improving performances by compensating weakness of existing algorithm. For increasing effect of detection, this system uses Single Gaussian Background Modeling which is more robust at noise and has adaptiveness. It minimizes unnecessarily detected area that is a limitation of the detecting method by using the background differences. And this system prevents additional detecting problems by removing shadow. Also, This system solves the problems of segmentation and union of people by using a new method. This method can work appropriately, if the angle of camera would not strictly vertical or the direction of shadow were lopsided. Also, by using integration System, it can solve a number of special cases as many as possible. For example, if the system fails to tracking, it will detect the object again and will make it possible to count moving people.
In this paper, a machine vision system for recognizing and classifying the patterns and marks engraved by die molding or laser marking on the glass panels of computer monitors is suggested and evaluated experimentally. The vision system is equipped with a neural network and an NGC pattern classifier including searching process based on normalized grayscale correlation and adaptive binarization. This system is found to be applicable even to the cases in which the segmentation of the pattern area from the background using ordinary blob coloring technique is quite difficult. The inspection process is accomplished by the use of the NGC hypothesis and ANN verification. The proposed pattern recognition system is composed of three parts: NGC matching process and the preprocessing unit for acquiring the best quality of binary image data, a neural network-based recognition algorithm, and the learning algorithm for the neural network. Another contribution of this paper is the method of generating the training patterns from only a few typical product samples in place of real images of all types of good products.
Contents 1 In this paper a machine vision system for recognizing and classifying the patterns and marks engraved by die molding or laser marking on glass panel of computer monitor is suggested and evaluated experimentally. The vision system is equipped with a neural network based pattern classifier and searching process based on normalized grayscale correlation and adaptive binarization, which is applicable to the cases in which the segmentation of the pattern area from background using the ordinary blob coloring technique is quite difficult. Inspection process is accomplished via the way of NGC hypothesis and ANN verification. The proposed pattern recognition system is composed of three...
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.