자동차 배기음은 음성과 무관한 거의 독립적인 음원이라고 볼 수 있다. 따라서 자동차 배기음과 섞인 음성 신호의 경우에 두 음원에 대한 사전 정보가 없는 상황이므로 Blind Source Separation 의 한 방법인 Independent Component Analysis를 이용하여 분리해 내었다. 스테레오 마이크를 통해 섞여 들어 온 두 음원을 분리해 내기 위해 Maximum Likelyhood Estimation을 이용하여 각 신호들 사이의 독립성을 최대화 하는 방향으로 분리하였다. 분리된 신호는 어느 쪽이 음성 신호인지 알 수 없으므로 주파수 영역에서 자기 공분산을 구한 후 이 공분산 값들의 기울기를 이용하여 음성 신호와 자동차 배기음 신호을 구분하였으며 이 두 알고리즘을 결합하여 음성 신호 잡음 제거기를 구현하였다.
The independent component analysis (ICA) technique is a source identification method that uses statistical independence to separate source signals from measured signals. It has been successfully applied to various fields such as medical care and communication. In this study, the ICA technique was adopted to analyze the vibration source contribution of plate structures. The theory of the ICA technique is introduced and the procedure of the vibration source contribution analysis based on the ICA technique is proposed. To investigate the applicability of the proposed method to plate structures, numerical examples are presented for a rectangular plate under harmonic force excitations. The results show that the proposed method could become an effective tool for the vibration source contribution analysis of a plate structure.
현재의 연구에서는 소음을 제거하기 위해 블라인드 소스 분리(BSS)접근 방식에 의해 최적화된 두뇌-컴퓨터 인터페이스(BCI)를 제안했다. 모터 이미지(MI)신호와 정상 상태 시각적 제거 전위(SSVEP)신호는 신호 대 잡음비(SNR)의 증가로 인해 쉽게 검출되었다. 또한, MI와 SSVEP사이의 조합은 일반적으로 현재 BCI에서 생성되는 명령 수를 증가시킬 수 있다. 현재 시스템은 계산 시간을 줄이고 BCI를 실제 용도에 가깝게 하기 위해 단일 채널 EEG신호를 사용했다. 또한, 복잡한 신경 네트워크(CNN)가 다중 클래스 분류 모델로 사용되었다. 우리는 비 MS/BCI와 BBS/BCI사이의 정확성 측면에서 성능을 평가했다. 결과적으로 BBS+BCI의 정확도는 비 BBS+BCI의 정확도보다 $16.15{\pm}25.12%$더 높은 수준에 도달했다. 사용하지 않을 때보다 BBS를 사용함으로써 전반적으로 제안된 BCI시스템은 비교적 정확한 다차원 제어 애플리케이션에 적용될 가능성을 입증했다.
본 논문은 기존의 주파수 영역 독립 성분 분석(FDICA : frequency domain independent component analysis) 방법에 가변 적응 상수를 이용한 알고리즘을 제안한다. 여러 반향 환경에 대한 모의실험으로 기존의 temporal structure(TA)알고리즘, FDICA알고리즘과 비교하여 그 분리 성능을 평가하고 비교한다. 실제 녹음한 혼합 음원에 대한 분리정도를 비교 분석한다.
Independent Component Analysis (ICA) is a blind source separation method using unsupervised learning and mutual information theory created in the late eighties and developed in the nineties. It has already succeeded in separating eye movement artifacts from human scalp EEG recording. Several characteristic sleep waves such as sleep spindle, K-complex, and positive occipital sharp transient of sleep (POSTS) can be recorded during sleep EEG recording. They are used as stage determining factors of sleep staging and might be reflections of unknown neural sources during sleep. We applied the ICA method to sleep EEG for sleep waves separation. Eighteen channel scalp longitudinal bipolar montage was used for the EEG recording. With the sampling rate of 256Hz, digital EEG data were converted into 18 by n matrix which was used as a original data matrix X. Independent source matrix U (18 by n) was obtained by independent component analysis method ($U=W{\timex}X$, where W is an 18 by 18 matrix obtained by ICA procedures). ICA was applied to the original EEG containing sleep spindle, K-complex, and POSTS. Among the 18 independent components, those containing characteristic shape of sleep waves could be identified. Each independent component was reconstructed into original montage by the product of inverse matrix of W (inv(W)) and U. The reconstructed EEG might be a separation of sleep waves without other components of original EEG matrix X. This result (might) demonstrates that characteristic sleep waves may be separated from original EEG of unknown mixed neural origins by the Independent Component Analysis (ICA) method.
This paper presents a new kurtosis-based algorithm for blind separation of convolutively mixed source signals. The algorithm whitens the signals not only spatially but also temporally beforehand. A separator is built for the whitened signals and it exists in the set of para-unitary matrices. Since the set forms a curved manifold, it is hard to treat its elements. In order to avoid the difficulty, this paper introduces the Cayley transformation for the para-unitary matrices. The transformed matrix is referred to as para-skew-Hermitian matrix and the set of such matrices forms a linear space. In the set of all para-skew-Hermitian matrices, the kurtosis-based algorithm obtains a desired separator. This paper also shows the algorithm's application to electrogastrogram datum which are observed by 4 electrodes on subjects' abdomen around their stomachs. An electrogastrogram contains signals from a stomach and other organs. This paper obtains independent components by the algorithm and then extracts the signal corresponding to the stomach from the data.
본 논문에서는 음원에 관한 정보가 미지의 상황에서 마이크로폰 어레이를 사용하여 두 음원신호를 분리하는 ,시스템을 제안한다 이 시스템은 두 단계로 구성되어 있으며, 첫 번째 단계에서는 파워가 큰 제 1음원의 DOA(Direction Of Arrival)를 추정하고, AMUSE(Algorithm for Multiple Unknown Signals Extraction)법을 사용한 Blind Deconvolution에 의해 음원신호의 분리를 행한다 두 번째 단계에서는 파워가 낮은 제 2음원의 강조신호를 사용하여 DSA(Delay and Sum Array)법에 의해 제 2음원의 DOA를 추정하고,AMUSE법의 출력신호와 두 음원의 DOA를 이용하여 ANF(Adaptive Notch Filter)를 구성하고, 두 음원신호의 재 분리를 행한다. 그리고, 시뮬레이션을 통해 제안한 방법의 유효성을 검토한 결과 두 음원 신호가 분리 가능한 것이 확인되었다.
본 연구에서는 신호원에 대한 사전 정보 없이 혼합된 신호로부터 잡음 신호만을 선택적으로 제거할 수 있는 새로운 형태의 능동 소음 제거기(Active noise canceller)를 제안한다. 음성신호와 같은 독특성을 갖는 신호의 분리에 효과적으로 사용되는 동적 재귀 신경망 (Dynamic recurrent neural network)을 원하는 신호원에 섞인 잡음신호를 분리하여 선택적으로 제거하기 위한 능동소음제거기의 전처리기로 미용한다. 능동 소음 제거기는 분리된 잡음 신호에 대한 역 위상 신호를 적응적으로 발생함으로써 특정 위치에서 원하는 신호만을 선택적으로 남길 수 있도록 한다. 컴퓨터를 이용한 시뮬레이션에서는 제안된 시스템이 선택적인 소음제거에 효과적임을 보인다.
Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.
For dual-channel time-frequency (TF) overlapped signals with low sparsity in underdetermined blind source separation (UBSS), this paper proposes an effective method based on interval probability to estimate and expand the types of mixing matrices. First, the detection of TF single-source points (TF-SSP) is used to improve the TF sparsity of each source. For more distinguishability, as the ratios of the coefficients from different columns of the mixing matrix are close, a local peak-detection mechanism based on interval probability (LPIP) is proposed. LPIP utilizes uniform subintervals to optimize and classify the TF coefficient ratios of the detected TF-SSP effectively in the case of a high level of TF overlap among sources and reduces the TF interference points and redundant signal features greatly to enhance the estimation accuracy. The simulation results show that under both noiseless and noisy cases, the proposed method performs better than the selected mainstream traditional methods, has good robustness, and has low algorithm complexity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.