• Title/Summary/Keyword: blind source separation

Search Result 90, Processing Time 0.022 seconds

Ambient modal identification of structures equipped with tuned mass dampers using parallel factor blind source separation

  • Sadhu, A.;Hazraa, B.;Narasimhan, S.
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.257-280
    • /
    • 2014
  • In this paper, a novel PARAllel FACtor (PARAFAC) decomposition based Blind Source Separation (BSS) algorithm is proposed for modal identification of structures equipped with tuned mass dampers. Tuned mass dampers (TMDs) are extremely effective vibration absorbers in tall flexible structures, but prone to get de-tuned due to accidental changes in structural properties, alteration in operating conditions, and incorrect design forecasts. Presence of closely spaced modes in structures coupled with TMDs renders output-only modal identification difficult. Over the last decade, second-order BSS algorithms have shown significant promise in the area of ambient modal identification. These methods employ joint diagonalization of covariance matrices of measurements to estimate the mixing matrix (mode shape coefficients) and sources (modal responses). Recently, PARAFAC BSS model has evolved as a powerful multi-linear algebra tool for decomposing an $n^{th}$ order tensor into a number of rank-1 tensors. This method is utilized in the context of modal identification in the present study. Covariance matrices of measurements at several lags are used to form a $3^{rd}$ order tensor and then PARAFAC decomposition is employed to obtain the desired number of components, comprising of modal responses and the mixing matrix. The strong uniqueness properties of PARAFAC models enable direct source separation with fine spectral resolution even in cases where the number of sensor observations is less compared to the number of target modes, i.e., the underdetermined case. This capability is exploited to separate closely spaced modes of the TMDs using partial measurements, and subsequently to estimate modal parameters. The proposed method is validated using extensive numerical studies comprising of multi-degree-of-freedom simulation models equipped with TMDs, as well as with an experimental set-up.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • Jang, Gil-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.146-155
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single charmel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single charmel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

Separation of Single Channel Mixture Using Time-domain Basis Functions

  • 장길진;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.146-146
    • /
    • 2002
  • We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of time-domain basis functions that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis functions. For each time point we infer the source parameters and their contribution factors. This inference is possible due to the prior knowledge of the basis functions and the associated coefficient densities. A flexible model for density estimation allows accurate modeling of the observation, and our experimental results exhibit a high level of separation performance for simulated mixtures as well as real environment recordings employing mixtures of two different sources. We show separation results of two music signals as well as the separation of two voice signals.

An Improved Multiplicative Updating Algorithm for Nonnegative Independent Component Analysis

  • Li, Hui;Shen, Yue-Hong;Wang, Jian-Gong
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.193-199
    • /
    • 2013
  • This paper addresses nonnegative independent component analysis (NICA), with the aim to realize the blind separation of nonnegative well-grounded independent source signals, which arises in many practical applications but is hardly ever explored. Recently, Bertrand and Moonen presented a multiplicative NICA (M-NICA) algorithm using multiplicative update and subspace projection. Based on the principle of the mutual correlation minimization, we propose another novel cost function to evaluate the diagonalization level of the correlation matrix, and apply the multiplicative exponentiated gradient (EG) descent update to it to maintain nonnegativity. An efficient approach referred to as the EG-NICA algorithm is derived and its validity is confirmed by numerous simulations conducted on different types of source signals. Results show that the separation performance of the proposed EG-NICA algorithm is superior to that of the previous M-NICA algorithm, with a better unmixing accuracy. In addition, its convergence speed is adjustable by an appropriate user-defined learning rate.

Acoustic Echo Cancellation using Time-Frequency Masking and Higher-order Statistics (시간-주파수 마스킹과 고차 신호 통계를 이용한 음향 반향신호 제거)

  • Kim, Kyoung-Jae;Nam, Sang-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.629-631
    • /
    • 2007
  • In hands-free full-duplex communication systems, acoustic signals picked up by the microphones can be mixed with echo signals as well as noises, which may result in poor performance of the corresponding communication system. Also, the system performance may decrease further if the reverberation occurs since it is harder to estimate the impulse response of the demixing system. For blind source separation (BSS) in such cases, a time-frequency masking approach can be employed to separate undesired echo signals and noises, but, permutation ambiguities also should be solved for the echo cancellation. In this paper, we propose a new acoustic echo cancellation (AEC) approach utilizing the time-frequency masking and higher-order statistics, whereby a desired signal selection, based on coherence and third-order statistics (i.e., kurtosis), is introduced along with output signal normalization. Simulation results demonstrate that the proposed approach yields better echo and noise cancellation performances than the conventional AEC approaches.

Frequency Domain Blind Source Seperation Using Cross-Correlation of Input Signals (입력신호 상호상관을 이용한 주파수 영역 블라인드 음원 분리)

  • Sung Chang Sook;Park Jang Sik;Son Kyung Sik;Park Keun-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.328-335
    • /
    • 2005
  • This paper proposes a frequency domain independent component analysis (ICA) algorithm to separate the mixed speech signals using a multiple microphone array By estimating the delay timings using a input cross-correlation, even in the delayed mixture case, we propose a good initial value setting method which leads to optimal convergence. To reduce the calculation, separation process is performed at frequency domain. The results of simulations confirms the better performances of the proposed algorithm.

  • PDF

Audio Source Separation Method Based on Beamspace-domain Multichannel Non-negative Matrix Factorization, Part I: Beamspace-domain Multichannel Non-negative Matrix Factorization system (빔공간-영역 다채널 비음수 행렬 분해 알고리즘을 이용한 음원 분리 기법 Part I: 빔공간-영역 다채널 비음수 행렬 분해 시스템)

  • Lee, Seok-Jin;Park, Sang-Ha;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.317-331
    • /
    • 2012
  • In this paper, we develop a multichannel blind source separation algorithm based on a beamspace transform and the multichannel non-negative matrix factorization (NMF) method. The NMF algorithm is a famous algorithm which is used to solve the source separation problems. In this paper, we consider a beamspace-time-frequency domain data model for multichannel NMF method, and enhance the conventional method using a beamspace transform. Our decomposition algorithm is applied to audio source separation, using a dataset from the international Signal Separation Evaluation Campaign 2010 (SiSEC 2010) for evaluation.

B1ind Source Separation by PCA (주성분 분석을 이용한 블라인드 신호 분리)

  • 이혜경;최승진;방승양
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.304-306
    • /
    • 2001
  • Various methods for blind source separation (BSS) are based on independent component analysis (ICA) which can be viewed as a nonlinear extension of principal component analysis (PCA). Most existing ICA methods require certain nonlinear functions, the shapes of which depend on the probability distributions of sources (which is not known in advance), whereas FCA is a linear learning method based on only second-order statistics. In this paper we show how BSS can be achieved by FCA, provided that sources are spatially uncorrelated but temporally correlated.

  • PDF

Orthogonal Least Square Approach to Nonstationary Source Separation

  • Choi Heeyoul;Choi Seungjin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.41-44
    • /
    • 2002
  • Blind source separation (BSS) is a fundamental problem that is encountered in many practical applications. In most existing methods, stationary sources are considered higher-order statistics is necessary either explicitly or implicitly. But, many natural signals are nonstationary, and it is possible to perform BSS using only second-order statistics. Our method is based on only second order statistics. The algorithms are developed using the gradient descent method in orthogonality constraint and their performance is confirmed by numerical experiments.

  • PDF

A simple iterative independent component analysis algorithm for vibration source signal identification of complex structures

  • Lee, Dong-Sup;Cho, Dae-Seung;Kim, Kookhyun;Jeon, Jae-Jin;Jung, Woo-Jin;Kang, Myeng-Hwan;Kim, Jae-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.128-141
    • /
    • 2015
  • Independent Component Analysis (ICA), one of the blind source separation methods, can be applied for extracting unknown source signals only from received signals. This is accomplished by finding statistical independence of signal mixtures and has been successfully applied to myriad fields such as medical science, image processing, and numerous others. Nevertheless, there are inherent problems that have been reported when using this technique: instability and invalid ordering of separated signals, particularly when using a conventional ICA technique in vibratory source signal identification of complex structures. In this study, a simple iterative algorithm of the conventional ICA has been proposed to mitigate these problems. The proposed method to extract more stable source signals having valid order includes an iterative and reordering process of extracted mixing matrix to reconstruct finally converged source signals, referring to the magnitudes of correlation coefficients between the intermediately separated signals and the signals measured on or nearby sources. In order to review the problems of the conventional ICA technique and to validate the proposed method, numerical analyses have been carried out for a virtual response model and a 30 m class submarine model. Moreover, in order to investigate applicability of the proposed method to real problem of complex structure, an experiment has been carried out for a scaled submarine mockup. The results show that the proposed method could resolve the inherent problems of a conventional ICA technique.