• Title/Summary/Keyword: blind mode

Search Result 57, Processing Time 0.024 seconds

Audio Watermarking Using Empirical Mode Decomposition (경험적 모드 분해법을 이용한 오디오 워터마킹)

  • Nguyen, Phuong;Kim, Jong-Myon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.89-92
    • /
    • 2014
  • This paper presents a secure and blind adaptive audio watermarking algorithm based on Empirical Mode Decomposition (EMD). The audio signal is divided into frames and each one is decomposed adaptively, by EMD, into several Intrinsic Mode Functions (IMFs). The watermark and the synchronization codes are then embedded into the extrema of the last IMF. The experimental results show that the proposed method has good imperceptibility and robustness against signal processing attacks.

  • PDF

A Study on Blind Watermarking Technique of Digital Image using 2-Dimensional Empirical Mode Decomposition in Wavelet Domain (웨이블릿 평면에서의 2D-EMD를 이용한 디지털 영상의 블라인드 워터마킹 기술에 관한 연구)

  • Lee, Young-Seock;Kim, Jong-Weon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.2
    • /
    • pp.99-107
    • /
    • 2010
  • In this paper a blind watermarking algorithm for digital image is presented. The proposed method operates in wavelet domain. The watermark is decomposed into 2D-IMFs using BEMD which is the 2-dimensional extension of 1 dimensional empirical mode decomposition. The CDMA based on SS technique is applied to watermark embedding and detection process. In the watermark embedding process, each IMF of watermark is embedded into middle frequency subimages in wavelet domain, so subimages just include partial information about embedded watermark. By characteristics of BEMD, when the partial information of watermark is synthesized, the original watermark is reconstructed. The experimental results show that the proposed watermarking algorithm is imperceptible and moreover is robust against JPEG compression, common image processing distortions.

The Proposal of New MMA Algorithm

  • Song, Jai-Chul;Kim, Woo-Sik;Cho, Byung-Lok
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.240-243
    • /
    • 2000
  • In this paper, new Multi-Modulus blind Equalizer Algorithms for QAM signal set is propsed and analyzed and its performance is evaluated. The MMA algorithm combines the benifits of RCA and CMA. A new Dual-mode blind Algorithms for QAM signal set is derived. The concept of this algorithms is based on the Dual-Mode algorithm and the MMA algorithm. In order to analyze and evaluate the performance of new MMA algorithms, computer simulation are performed for the nonsquare QAM signal constellations. Form the simulation results, we can verify that new MMA algorithms converges very fast comparing to conventional MMA algorithm.

  • PDF

A Study of Mode Choice Analysis of Blind Spot Areas for Public Transportation in Four Metropolitan Cities (대도시권 대중교통 사각지대 통행자들의 수단선택 모형 개발 - 급행버스 노선 도입에 따른 선호의식 조사를 중심으로 -)

  • Kim, Hwang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.565-569
    • /
    • 2012
  • This study selected blind spot areas for public transportation in four metropolitan cities including Busan, Daegue, Gwangju, and Daejeon. Then this study developed a nested logit model and analyzed the changes of mode choice behaviors after adopting rapid transit system using stated preference(SP) survey. As the study results, blind spot areas have more potential public transportation demand and tendency to shift to public transportation from autos than built-up areas. This study results can be utilized to evaluate demand changes for new rapid transit system in a circular expressway and an arterial highway connecting CBD and surrounding areas. The study results also can be utilized to analyze the potential public transportation demand in the surrounding areas.

Adaptive blind equalization algorithm with dual-mode (이중 모드를 가지는 적응 블라인드 등화 알고리즘)

  • 정영화;진용옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.2005-2013
    • /
    • 1997
  • The MCMA adaptive blind equalization algorithm has a excellent phase correction capabilities in addition to channel amplitude equalization, but has an inevitable error by mismatching between the original constellation points in arriving at the perfect equalization since unique new type constellation points are used as desired response instead of original constellation points and follows the slow convergence speed of CMA. In this paper, We propose an adaptive blind equalization algorithm with dual-mode, which has decision regions. Inside the decision regions, it operates as considering the moudlus of original data symbol point and outside the decision region, it operates as considerin gthe modulus of new constellation points. The proposed algorithm has a lower error in the steady state and rapid convergence speed toward steady state using the original data symbol points instead of new constellation points in the decision regions. From computer simulation, we confirm that the propposed algorithm has the performance superiority in residual ISI, convergence speed compared with the cnventional adaptive blind equalization algorithms, CMA, MCMA, Stop-and-Go algorithm.

  • PDF

Integer Frequency Offset Estimation of OFDM Systems

  • Yoon, Dae-Gung;Han, Dong-Seog
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • A blind-mode integer frequency offset estimation algorithm is proposed for an OFDM system. Imperfect integer frequency offset estimation causes ambiguity in the data sub-carrier position. Morelli's blind integer frequency offiet estimation algorithm exploits the likelihood function by comparing the power in sub-carriers. It, however, shows performance degradation when there is the fractional frequency offset. The proposed algorithm solves this by using interpolation in the frequency domain. In this algorithm, it is exploited that the effect of the frequency offset is shown as a shift of power spectrum. By calculating the covariance of over-sampled samples, most approximate samples to integer point are obtained. It enables integer frequency offset estimation less affected by fractional frequency offset.

  • PDF

Initial Convergence Detection of Blind Equalization Algorithm Automatically (블라인드 등화 알고리즘의 초기 수렴 자동 검출 기법)

  • Choi, Ik-Hyun;Kim, Chul-Min;Choi, Soo-Chul;Oh, Kil-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.445-447
    • /
    • 2005
  • MCMA(modified constant modulus algorithm) accomplishes blind equalization and carrier phase recovery simultaneously. But, the error level of MCMA is not zero when the equalizer converges completely. Because the MCMA uses a special signal point instead of a original signal point. MCMA-DO(decision-directed) improves the steady-state performance but the performance of equalizer is decided by switching time between the MCMA and the DD. In this paper, according to the residual ISI(intersymbol interference) of the equalizer output, the most suitable switching time is decided automatically.

  • PDF

Performance Improvement of the QAM System using the Dual-Mode NCMA and DPLL (이중모드로 동작하는 NCMA와 DPLL를 이용한 QAM 시스템의 성능향상)

  • 강윤석;안상식
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.978-985
    • /
    • 2000
  • Blind equalizers recover the transmitted data using statistical characteristics of the signal alone. Among many alternatives, steepest gradient descent type algorithms such as the CMA and Sato algorithm are most widely utilized in practice. In this paper we propose a dual-mode NCMA algorithm, which combines the advantages of the dual mode CMA and Normalized CMA (NCMA) with the dual mode phase recovery algorithm. In addition, we perform computer simulations to demonstrate the performance improvement of the proposed algorithm with a QAM system. Simulation results show that the presented algorithm has a faster convergence speed and smaller steady-state residual error than the CMA and dual-mode CMA.

  • PDF

Blind Adaptive Equalization of Partial Response Channels (부분 응답 채널에서의 블라인드 적응 등화 기술에 관한 연구)

  • 이상경;이재천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1827-1840
    • /
    • 2001
  • In digital data transmission/storage systems, the compensation for channel distortion is conducted normally using a training sequence that is known a priori to both the sender and receiver. The use of the training sequences results in inefficient utilization of channel bandwidth. Sometimes, it is also impossible to send training sequences such as in the burst-mode communication. As such, a great deal of attention has been given to the approach requiring no training sequences, which has been called the blind equalization technique. On the other hand, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed transmission and high-density recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCRs and digital versatile recordable disks and so on. This paper is concerned with blind adaptive equalization of partial response channels whose transfer function zeros are located on the unit circle, thereby causing some problems in performance. Specifically we study how the problems of blind channel equalization associated with the PR channels can be improved. In doing so, we first discuss the existing methods and then propose new structures for blind PR channel equalization. Our structures have been extensively tested by computer simulation and found out to be encouraging in performance. The results seem very promising as well in terms of the implementation complexity compared to the previous approach reported in literature.

  • PDF

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.