• 제목/요약/키워드: blind deblurring

검색결과 11건 처리시간 0.025초

An Adaptive Iterative Algorithm for Motion Deblurring Based on Salient Intensity Prior

  • Yu, Hancheng;Wang, Wenkai;Fan, Wenshi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.855-870
    • /
    • 2019
  • In this paper, an adaptive iterative algorithm is proposed for motion deblurring by using the salient intensity prior. Based on the observation that the salient intensity of the clear image is sparse, and the salient intensity of the blurred image is less sparse during the image blurring process. The salient intensity prior is proposed to enforce the sparsity of the distribution of the saliency in the latent image, which guides the blind deblurring in various scenarios. Furthermore, an adaptive iteration strategy is proposed to adjust the number of iterations by evaluating the performance of the latent image and the similarity of the estimated blur kernel. The negative influence of overabundant iterations in each scale is effectively restrained in this way. Experiments on publicly available image deblurring datasets demonstrate that the proposed algorithm achieves state-of-the-art deblurring results with small computational costs.

무정보 blur 이미지 복구를 위한 DFT 변환 (A DFT Deblurring Algorithm of Blind Blur Image)

  • 문경일;김철
    • 정보교육학회논문지
    • /
    • 제15권3호
    • /
    • pp.517-524
    • /
    • 2011
  • 어떠한 현상 혹은 사물의 이미지를 학생들에게 제공하는데 있어서 여러 가지 원인에 의해 초점이 흐리거나 혹은 흔들린 이미지들이 등장하여 학생들에게 보여주기가 힘든 경우가 빈번하게 발생한다. 특히, 이미지에 대한 구체적인 정보가 없는 경우에는 그 이미지는 쓸모가 없는 것이 된다. 본 연구는 무정보 블러링 이미지를 아주 빠른 시간 내에 복구할 수 있는 2차원 DFT 기반의 하나의 블러링 제거 알고리즘을 제안하는데 있다. 제안된 방법의 빠른 처리 속도는 이산 푸리에 변환, 변환의 필터링과 회선 관계 및 Moore-Penrose 역행렬의 효과적인 계산 방식을 바탕으로 한다. 특히, 필터의 주파수 응답에 관한 처리는 유용한 회선 공식을 유도한다. 제안된 방법의 구현은 보통 크기의 블러링 이미지에 적용했을 때, 아주 빠른 시간 내에 블러링 효과를 제거시킬 수 있고, 보다 선명한 이미지를 제공할 수 있음을 보인다.

  • PDF

반복 semi-blind 위너 필터링을 이용한 이진영상의 복원 (Restoration of Bi-level Images via Iterative Semi-blind Wiener Filtering)

  • 김정태
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1290-1294
    • /
    • 2008
  • We present a novel deblurring algorithm for bi-level images blurred by some parameterizable point spread function. The proposed method iteratively searches unknown parameters in the point spread function and noise-to-signal ratio by minimizing an objective function that is based on the binariness and the difference between two intensity values of restoring image. In simulations and experiments, the proposed method showed improved performance compared with the Wiener filtering based method in terms of bit error rate after segmentation.

A Multi-view Super-Resolution Method with Joint-optimization of Image Fusion and Blind Deblurring

  • Fan, Jun;Wu, Yue;Zeng, Xiangrong;Huangpeng, Qizi;Liu, Yan;Long, Xin;Zhou, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2366-2395
    • /
    • 2018
  • Multi-view super-resolution (MVSR) refers to the process of reconstructing a high-resolution (HR) image from a set of low-resolution (LR) images captured from different viewpoints typically by different cameras. These multi-view images are usually obtained by a camera array. In our previous work [1], we super-resolved multi-view LR images via image fusion (IF) and blind deblurring (BD). In this paper, we present a new MVSR method that jointly realizes IF and BD based on an integrated energy function optimization. First, we reformulate the MVSR problem into a multi-channel blind deblurring (MCBD) problem which is easier to be solved than the former. Then the depth map of the desired HR image is calculated. Finally, we solve the MCBD problem, in which the optimization problems with respect to the desired HR image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Experiments on the Multi-view Image Database of the University of Tsukuba and images captured by our own camera array system demonstrate the effectiveness of the proposed method.

흉부 컴퓨터단층촬영 영상에서 블라인드 디컨볼루션 알고리즘 최적화 방법에 대한 연구 (Analysis on Optimal Approach of Blind Deconvolution Algorithm in Chest CT Imaging)

  • 이영준;민정환
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권2호
    • /
    • pp.145-150
    • /
    • 2022
  • The main purpose of this work was to restore the blurry chest CT images by applying a blind deconvolution algorithm. In general, image restoration is the procedure of improving the degraded image to get the true or original image. In this regard, we focused on a blind deblurring approach with chest CT imaging by using digital image processing in MATLAB, which the blind deconvolution technique performed without any whole knowledge or information as to the fundamental point spread function (PSF). For our approach, we acquired 30 chest CT images from the public source and applied three type's PSFs for finding the true image and the original PSF. The observed image might be convolved with an isotropic gaussian PSF or motion blurring PSF and the original image. The PSFs are assumed as a black box, hence restoring the image is called blind deconvolution. For the 30 iteration times, we analyzed diverse sizes of the PSF and tried to approximate the true PSF and the original image. For improving the ringing effect, we employed the weighted function by using the sobel filter. The results was compared with the three criteria including mean squared error (MSE), root mean squared error (RMSE) and peak signal-to-noise ratio (PSNR), which all values of the optimal-sized image outperformed those that the other reconstructed two-sized images. Therefore, we improved the blurring chest CT image by using the blind deconvolutin algorithm for optimal approach.

A depth-based Multi-view Super-Resolution Method Using Image Fusion and Blind Deblurring

  • Fan, Jun;Zeng, Xiangrong;Huangpeng, Qizi;Liu, Yan;Long, Xin;Feng, Jing;Zhou, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5129-5152
    • /
    • 2016
  • Multi-view super-resolution (MVSR) aims to estimate a high-resolution (HR) image from a set of low-resolution (LR) images that are captured from different viewpoints (typically by different cameras). MVSR is usually applied in camera array imaging. Given that MVSR is an ill-posed problem and is typically computationally costly, we super-resolve multi-view LR images of the original scene via image fusion (IF) and blind deblurring (BD). First, we reformulate the MVSR problem into two easier problems: an IF problem and a BD problem. We further solve the IF problem on the premise of calculating the depth map of the desired image ahead, and then solve the BD problem, in which the optimization problems with respect to the desired image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MVSR and BD, taking advantages of existing BD methods to address MVSR. Thus, this approach is appropriate for camera array imaging because the blur kernel is typically unknown in practice. Corresponding experimental results using real and synthetic images demonstrate the effectiveness of the proposed method.

Regularized Multichannel Blind Deconvolution Using Alternating Minimization

  • James, Soniya;Maik, Vivek;Karibassappa, K.;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권6호
    • /
    • pp.413-421
    • /
    • 2015
  • Regularized Blind Deconvolution is a problem applicable in degraded images in order to bring the original image out of blur. Multichannel blind Deconvolution considered as an optimization problem. Each step in the optimization is considered as variable splitting problem using an algorithm called Alternating Minimization Algorithm. Each Step in the Variable splitting undergoes Augmented Lagrangian method (ALM) / Bregman Iterative method. Regularization is used where an ill posed problem converted into a well posed problem. Two well known regularizers are Tikhonov class and Total Variation (TV) / L2 model. TV can be isotropic and anisotropic, where isotropic for L2 norm and anisotropic for L1 norm. Based on many probabilistic model and Fourier Transforms Image deblurring can be solved. Here in this paper to improve the performance, we have used an adaptive regularization filtering and isotropic TV model Lp norm. Image deblurring is applicable in the areas such as medical image sensing, astrophotography, traffic signal monitoring, remote sensors, case investigation and even images that are taken using a digital camera / mobile cameras.

에지 예측을 기반으로 한 효율적인 영상 디블러링 -선명한 에지 예측을 기반으로 한 장의 영상으로부터의 모션 블러 제거- (Efficient Image Deblurring using Edge Prediction)

  • 조성현;이승용
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.27-33
    • /
    • 2009
  • 본 논문은 한 장의 영상으로부터 균일 모션 블러를 빠르게 제거하는 방법을 제시한다. 한 장의 영상으로부터 모션 블러를 제거하는 기존의 방법들은 주로 전변량(total variation)이나 자연 영상 통계(natural image statistics)를 이용하였다. 반면 본 논문이 제시하는 방법은 양방향 필터(bilateral filter)와 쇼크 필터(shock filter), 그리고 영상 그레디언트(gradient)의 조작을 통해 선명한 에지를 예측하고, 이를 통해 모션 블러를 추정한다. 본 논문이 제시하는 선명한 에지 예측 기법을 통해 적은 계산량으로 효율적으로 블러를 추정할 수 있다. 실험결과를 통해 본 논문이 제시하는 방법이 넓고 복잡하게 블러된 영상을 효과적이고 빠르게 복원할 수 있음을 볼 수 있다.

  • PDF

Newly-designed adaptive non-blind deconvolution with structural similarity index in single-photon emission computed tomography

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4591-4596
    • /
    • 2023
  • Single-photon emission computed tomography SPECT image reconstruction methods have a significant influence on image quality, with filtered back projection (FBP) and ordered subset expectation maximization (OSEM) being the most commonly used methods. In this study, we proposed newly-designed adaptive non-blind deconvolution with a structural similarity (SSIM) index that can take advantage of the FBP and OSEM image reconstruction methods. After acquiring brain SPECT images, the proposed image was obtained using an algorithm that applied the SSIM metric, defined by predicting the distribution and amount of blurring. As a result of the contrast to noise ratio (CNR) and coefficient of variation evaluation (COV), the resulting image of the proposed algorithm showed a similar trend in spatial resolution to that of FBP, while obtaining values similar to those of OSEM. In addition, we confirmed that the CNR and COV values of the proposed algorithm improved by approximately 1.69 and 1.59 times, respectively, compared with those of the algorithm involving an inappropriate deblurring process. To summarize, we proposed a new type of algorithm that combines the advantages of SPECT image reconstruction techniques and is expected to be applicable in various fields.

잡음이 있고 흐릿한 영상의 블라인드 디컨벌루션을 위한 유전 프로그래밍 기법 (A Genetic Programming Approach to Blind Deconvolution of Noisy Blurred Images)

  • ;추연호;최영규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권1호
    • /
    • pp.43-48
    • /
    • 2014
  • 영상의 디컨벌루션은 보통 감시 시스템에서 모션 블러 (motion blur)나 초점이 맞지 않아 발생하는 블러 (out-of-focus blur) 문제를 줄이기 위해 전처리 과정에서 사용된다. 본 논문에서는 유전 프로그래밍 (Genetic Programming, GP)에 기반한 새로운 블라인드 영상 디컨벌루션 필터링 방법을 제안한다. GP 진화 과정을 통해 영상 복원을 위한 수학적 표현이 만들어지는데, 이것은 블러 영상의 특징들 사이의 관계를 최적으로 조합하여 원래 화소 값을 복원할 수 있는 추정자 함수가 된다. 이를 위해, 먼저 각 화소의 작은 이웃으로부터 특징 벡터를 만들고 추정자 함수를 학습시키는데, 이러한 GP 진화 과정을 통해 지정한 적합성 기준에 따라 유용한 정보들이 자동으로 조합된다. 개발된 함수는 훼손된 영상의 각 화소에 적용하여 원래의 화소 값을 복원하게 된다. 개발된 함수는 다양한 방법으로 훼손된 영상에 적용하여 실험하였는데, 실험 결과 제안된 방법이 기존 알고리즘에 비해 좋은 결과를 나타내는 것을 알 수 있었다.