• Title/Summary/Keyword: blended powder steels

Search Result 3, Processing Time 0.024 seconds

Rolling Contact Fatigue of Hot-forged Steels out of Prealloyed Powders and Powder Blend

  • Dorofeyev, Vladimir;Sviridova, Anna
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.559-560
    • /
    • 2006
  • Powder forging is used for heavy-loaded parts (rings of rolling-contact bearings, gears etc.) production. Rolling contact fatigue is material property values of which characterize possibility of practical utilization of such parts. Rolling contact fatigue of some steels obtained out of prealloyed powders Astaloy CrM, Atomet 4601, Atomet 4901 and powder blends iron-carbon-nickel by hot forging is studied in the present paper. Effect of various kinds of heat and thermomechanical treatment on rolling contact fatigue is determined. Thermomechanical treatment provides optimal values of rolling contact fatigue. In this case steel structure contains up to 40% of retained metastable austenite which is transformed to martensite on trials. Thus typically crack is generated on residual pores and non-metallic inclusions instead of martensite zones in wrought steels.

  • PDF

Modification of Low Alloyed Steels by Manganese Additions

  • Sicre-Artalejo, J.;Campos, M.;Torralba, JM
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.933-934
    • /
    • 2006
  • The present study examines the sintering behaviour and effect of manganese addition both mechanically-blended and mechanically alloyed on Cr-Mo low alloyed steels to enhance the mechanical properties. Mn sublimation during sintering provides some specific phenomena which facilitate the sintering of alloying elements with high oxygen affinity. First step is the optimization of milling time to attain a master alloy with 50% of Mn which is diluted in Fe-1.5Cr-0.2Mo water atomized prealloyed powder by normal mixing. These mixtures are pressed to a green density of $7.1g/cm^3$ and sintered at $1120^{\circ}C$ in $90N_2-10H_2$ atmosphere.

  • PDF

Complex Shaped PM-parts by Warm Flow Compaction Process

  • Veltl, Georg;Petzoldt, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.203-204
    • /
    • 2006
  • There is an increasing demand for PM-processes with the capability to produce parts of higher complexity than with conventional press and sinter technology in high production numbers. Warm-flow-compaction (WFC) makes use of improved flowability of powders when blended in an appropriate ratio with fine powder fractions and lubricating binders. Here the process is shown with examples of PM-Steels. General features possible with the process like pressing of undercuts and threaded bores are shown.

  • PDF