• Title/Summary/Keyword: blended model

Search Result 183, Processing Time 0.022 seconds

Tensile Performance of PE Fiber-Reinforced Highly Ductile Cementitious Composite including Coarse Aggregate (골재의 입도분포 변화에 따른 PE 섬유보강 고연성 시멘트 복합체의 인장성능)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.95-102
    • /
    • 2020
  • For the purpose of developing a PE fiber-reinforced highly ductile cementitious composite having high tensile strain capacity more than 2% under the condition of containing aggregates with large particle size, this study investigated the tensile behavior of composites according to the particle size and distribution of aggregates in the composite. Compared with the mixture containing silica sand of which particle size is less than 0.6 mm, mixtures containing river sand and/or gravel with the maximum particle size of 2.36 mm, 4.75 mm, 5.6 mm, 6.7 mm were considered in the experimental design. The particle size distributions of aggregates were adjusted for the optimized distribution curves obtained from modified A&A model by blending different sizes of aggregates. All the mixtures presented clear strain-hardening behavior in the direct tensile tests. The mixtures with the blended aggregates to meet the optimum curves of aggregate size distributions showed higher tensile strain capacity than the mixture with silica sand. It was also found that the tensile strain capacity was improved as the maximum size of aggregate increased which resulted in wider particle size distribution. The mixtures with the maximum size of 5.6 mm and 6.7 mm presented very high tensile strain capacities of 4.83% and 5.89%, respectively. This study demonstrated that it was possible to use coarse aggregates in manufacturing highly ductile fiber-reinforced cementitous composite by adjusting the particle size distribution.

Effectiveness of PBL Based on Flipped Learning for Middle School English Classes (플립드러닝 기반 PBL 모형 중학교 영어 수업의 효과)

  • Won, Youngmi;Park, Yangjoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.185-191
    • /
    • 2021
  • The purpose of this study is to develop middle school English classes using Problem-Based Learning(PBL) based on flipped learning and to examine its effects. Recently, various attempts to combine flipped learning and PBL have been made; however, many studies have not been applied to middle and high school curriculums yet. The attempt of this study is expected to have theoretical and practical significance. The instructional model was derived from the review of previous studies, and the development of instructional program followed the general design procedure(analysis-design-development-implement-evaluation), and its validity was secured with the advice of related experts. To verify the effectiveness of the program, the English academic achievement test and the English key competency test were conducted before and after the program. Changes in English academic achievement were analyzed by the paired-sample t-test, and the effect of key competency and the level of achievement test performance (high vs, low) on the pre-post score change was analyzed by the mixed effects repeated measures ANOVA. As a result of the analysis, both academic achievement and key competencies increased, and the low-level students in the pre-academic achievement test showed more improvements. In conclusion, the PBL class based on flipped learning is effective in improving the English academic achievement and key competencies of middle school students, and in particular, it is shown to be an effective teaching method for students with low academic achievement.

A systematic review on on-line education in mathematics education: Focused on before and after COVID-19 (수학 교육에서의 온라인 교육에 대한 체계적 문헌 고찰: COVID19 전후를 중심으로)

  • Hwang, Seonyoung;Han, Sunyoung;Cho, Yoonjin;Jeong, Hyeajin;Lee, Jaemin
    • Communications of Mathematical Education
    • /
    • v.38 no.2
    • /
    • pp.93-120
    • /
    • 2024
  • On-line education in mathematics education changed in various aspects before and after COVID-19. This study conducted a systematic literature review of 98 academic papers on on-line education published from 2017 to 2023 in the field of mathematics education before and after COVID19. In particular, this study conducted content analysis to organize on the definitions of various similar terms related to online education. In addition, this study explored research trends on year, research subject, research method, on-line education type, and research topic by the pre-COVID-19, COVID-19, and post-COVID-19 era. Also, a comparative analysis was conducted on literatures on the effects of online education. As a result, first, it was confirmed that there is a need to organize the definitions of terms similar to online education. Also, the implications of identifying the differences and hierarchies between each term can be found. Second, it was confirmed that teachers' expertise for on-line mathematics education was emphasized based on the result of the rapid increase in the number of on-line education studies on teachers since COVID-19. Third, it was confirmed that the number of studies on blended and flipped learning was high in pre-COVID-19, but decreased in the COVID-19 era. Instead, in the COVID-19 era, studies on real-time interactive classes were rapidly active, and even in the post-COVID-19 era, studies on real-time interactive classes still occupied a large proportion. Finally, it was confirmed that the effectiveness of on-line education varies depending on the research background and model. Accordingly, the need to be cautious in interpreting the results of each study on the effectiveness of on-line education was confirmed. Based on these findings, this study presented implications for future research on on-line education in mathematics education.