• Title/Summary/Keyword: blended lateritic soil

Search Result 1, Processing Time 0.017 seconds

Removal of hexavalent chromium Cr (VI) by adsorption in blended lateritic soil

  • Sunil, B.M.;Faziludeen, Saifiya
    • Advances in environmental research
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2015
  • Hexavalent chromium [Cr (VI)] adsorption on lateritic soil and lateritic soil blended with black cotton (BC) soil, marine clay and bentonite clay were studied in the laboratory using batch adsorption techniques. In the present investigation the natural laterite soil was blended with 10%, 20% and 30% BC soil, marine clay and bentonite clay separately. The interactions on test soils have been studied with respect to the linear, Freundlich and Langmuir isotherms. The linear isotherm parameter, Freundlich and Langmuir isotherm parameters were determined from the batch adsorption tests. The adsorption of Cr (VI) on natural laterite soil and blended laterite soil was determined using double beam spectrophotometer. The distribution coefficients obtained were 1.251, 1.359 and 2.622 L/kg for lateritic soil blended with 10%, 20% and 30% BC soil; 5.396, 12.973 and 48.641 L/kg for lateritic soil blended with marine clay and 5.093, 8.148 and 12.179 L/kg for lateritic soil blended with bentonite clay respectively. The experimental data fitted well to the Langmuir model as observed from the higher value of correlation coefficient. Soil pH and iron content in soil(s) has greater influence on Cr (VI) adsorption. From the study it is concluded that laterite soil can be blended with clayey soils for removing Cr (VI) by adsorption.