• 제목/요약/키워드: blend oil

검색결과 111건 처리시간 0.024초

A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제21권3호
    • /
    • pp.144-154
    • /
    • 2016
  • This review will be concentrated on the spray characteristics of biobutanol and its blends fuels in internal combustion engines including compression ignition, spark ignition and gas turbine engines. Butanol can be produced by fermentation from sucrose-containing feedstocks, starchy materials and lignocellulosic biomass. Among four isomers of butanol, n-butanol and iso-butanol has been used in CI and SI engines. This is due to higher octane rating and lower water solubility of both butanol compared with other isomers. The researches on the spray characteristics of neat butanol can be classified into the application to CI and SI engines, particularly GDI engine. Two empirical correlations for the prediction of spray angle for butanol as a function of Reynolds number was newly suggested. However, the applicability for the suggested empirical correlation is not yet proved. The butanol blended fuels used for the investigation of spray characteristics includes butanol-biodiesel blend, butanol-gasoline blend, butano-jet A blend and butanol-other fuel blends. Three blends such as butanol/ethanol, butanol/heptane and butanol/heavy fuel oil blends are included in butanol-other fuel blends. Even though combustion and emission characteristics of butanol/diesel fuel blend in CI engines were broadly investigated, study on spray characteristics of butanol/diesel fuel blend could not be found in the literature. In addition, the more study on the spray characteristics of butanol /gasoline blend is required.

Dietary fat preference and effects on performance of piglets at weaning

  • Weng, Ruey-Chee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권6호
    • /
    • pp.834-842
    • /
    • 2017
  • Objective: An experiment was to evaluate the interplay of dietary lipid sources and feeding regime in the transition from sow milk to solid food of abruptly weaned piglets. Methods: Soon after weaning, 144 piglets were selected and were trained over a 15 day period to experience gradually reducing dietary fat content from 12% to 6% for lard (L), soybean oil (S), and coconut oil (C) and their feeding behavior and diet preference then tested in a behavior observation experiment. Another 324 weaned piglets were used in three consecutive feeding experiments to measure the effect of different dietary fats on performance and feed choice in the four weeks after abrupt weaning. The lipid sources were used as supplements in a 3% crude fat corn/soya basal diet, with 6% of each being included to form diets 9C, 9S, and 9L respectively, and their effects on performance measured. Combinations of these diets were then further compared in fixed blends or free choice selection experiments. Results: Piglets pre-trained to experience reducing lipid inclusion showed different subsequent preferences according to lipid source, with a preference for lard at 9%, soybean oil at 3%, and coconut oil at 6% inclusion rate (p<0.001). Following abrupt weaning, whilst after 4 weeks those fed 9C had the heaviest body weights (18.13 kg, p = 0.006). Piglets fed a fixed 1:1 blend of 9C+9S had a poorer feed conversion ratio (FCR = 1.80) than those fed a blend of 9C+9L (FCR = 1.4). The 9C and 9L combination groups showed better performance in both fixed blend and free choice feeding regimes. Conclusion: After abrupt weaning, they still have dependence on high oleic acid lipids as found in sow milk. A feeding regime offering free choice combination of lipids might give the possibility for piglets to cope better with the transition at weaning, but further research is needed.

폐식용유를 이용한 소형 디젤기관의 성능 (Performances of the Used Frying Oil on a Small Diesel Engine)

  • 김성태;정형길;김영복
    • Journal of Biosystems Engineering
    • /
    • 제26권3호
    • /
    • pp.209-220
    • /
    • 2001
  • This study was carried out to investigate the usability of the used frying oil, which was extracted from soybean, as one of the alternative fuel of a small diesel engine. For the experiment, NO. 2 diesel oil [D], used frying oil [UF], and their volumetric blends were applied and analysis of the properties and compositions of the experimental fuels were conducted. A four cycle diesel engine with single cylinder, water cooling system, maximum output 8.1 ㎾/2,200 rpm was selected and a direct injection chamber and a precombustion chamber were attached alternately. The results obtained were as follows: 1. Engine power (BHP) were increased from 4.13~4.27㎾ to 9.08~9.15㎾ for diesel oil, from 4.05~4.19㎾ to 8.44~8.92㎾ for UF, and from 4.01~4.48㎾ to 8.69~9.16㎾ for blend fuel, as the engine speed increased from 1,000 rpm to 2,200 rpm. The BHP in case of the direct combustion chamber were fluctuated higher than those of the pre-combustion chamber. 2. With the engine speed increased, torque of the engine were increased from 39.50~40.80 N.m to 42.89 N.m, then decreased to 39.44~39.77 N.m for diesel oil, and increased from 38.73~40.04 N.m to 40.12~40.82 N.m then decreased as 36.53~38.76 N.m for UF. Torque of the blend fuels were increased from 38.75~41.76 N.m to 40.47~42.89 N.m then decreased to 37.73~39.78 N.m. There is no significant difference of torque between the type of combustion chambers. 3. The specific fuel consumption of the UF was increased about 20 percent depending on the engine speed variations. And in case of direct injection chamber, about 12 percent lower fuel consumption was observed than that of precombustion chamber. 4. NOx emission of the UF was higher than that of diesel oil at above 1,800rpm of the engine speed. In case of the direct injection chamber, NOx emission was revealed higher about 59 percent than that of the precombustion chamber, depending on the range of the engine speeds. 5. Smoke emission was decreased in case of UF compared with diesel oil on direct injection chamber. When using precombustion chamber smoke emission was a little higher than that of the direct injection chamber were showed at the engine speed range. 6. At all the engine speed range, exhaust gas temperatures were decreased 2~3$^{\circ}C$ for UF used engine compared with those of the diesel oil. The exhaust gas temperature of the direct injection chamber was higher than that of the precombustion chamber by 72$^{\circ}C$. 7. Unburnt materials remained in the cylinder in case of the pre-combustion chamber was smaller and softer than that of the direct combustion chamber. 8. The feasibility of the blend fuel B-1 and B-2 were verified as a direct combustion chamber was attached to the diesel engine, with respect to the power performance of the engine.

  • PDF

바이오디젤 연료 분무의 거동특성 연구 (A Study of Behavior Characteristics of Biodiesel Fuel Spray)

  • 염정국
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.156-163
    • /
    • 2014
  • Diesel engine is most suitable one for biodiesel fuel because the compression-ignition diesel engine has desirable fuel consumption due to higher thermal efficiency and in addition, the improvement of the fuel consumption also leads to a reduction of $CO_2$ emission and then it does not need to have spark-ignition system, which means that there is less charge on the technic and complexity. In this study, the spray behavior characteristics of the vegetable palm oil were analyzed by using a common-rail injection system of commercial diesel engine and the results were compared with those obtained for the diesel fuel. The injection pressures and blend ratios of palm oil and diesel(BD3, BD5, BD20, BD30, BD50, and BD100) were the main parameters. The experiments were conducted for different injection pressures: 500bar, 1000bar, 1500bar, and 1600bar by setting injection duration to $500{\mu}s$. Consequently, it was found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of palm oil and diesel at a fixed injection pressure. In particular, all experiments showed the spray angle about $12^{\circ}{\sim}13^{\circ}$.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

들기름이 Dimethylhydrazine으로 처리한 쥐에서 대장암의 Biomarker인 지방산조성과 1, 2-Diacylglycerol 및 Eicosanoid 함량에 미치는 영향 (Effect of $\alpha$-Linolenic Acid Rich Perilla oil on Colonic Mucosal Levels of Biomarkers(Fatty Acid Profile, DAG, Eicosanoid) in Colon Carcinogenesis of DMH-Treated Rats)

  • 김채종
    • Journal of Nutrition and Health
    • /
    • 제29권1호
    • /
    • pp.112-121
    • /
    • 1996
  • The study was designed to observe the effect of blend fat calculated from the foods consumed in Korean with those of perilla oil, beef tallow and corn oil on colonic mucosal phospholipid fatty acid composition and the levels of TXB2 and diacylglycerol (DAG) which were known as biomarkers for cancer. Male Sprague Dawley rats, at 7 weeks of age, were divided into control and 1, 2-dimethylhydrazine (DMH)-treated group, and each group was subdivided into four groups. The experimental diets contained one of four dietary fats, blend fat (BF), perilla oil(PO), beef tallow (BT) or corn oil (CO), at 15% (w/w) level. At the same time, each rat was injected with saline for control group or DMH twice a week for 6 weeks to give total dose of 180mg/kg body weight. DMH injection, regardless of the type of dietary fats, significantly increased the levels of PGE2 and TXB2 in colonic mucosal layer compared to control (p<0.01). However, the level of eicosanoids was influenced by the types of dietary fats in both control and DMH group. In control groups, colonic mucosal level of TXB2 was higher in beef tallow group, but lower in perilla oil group compared to that of blend fat (p<0.01). In DMH groups, the level of TXB2 was higher in beef tallow and corn oil groups(p<0.05). The level of PGE2 showed the same trends with TXB2 and beef tallow most significantly increased the level of PGE2. DMH treatment did not influence on tissue fatty acid profile, which was directly reflected by dietary fatty acid composition. Proportions of C18 : 2 in colonic mucosal phospholipid well reflected dietary level of C18 : 2 showing the order CO>BF>PO>BT. The precentage of arachidonic acid(AA) in mucosal phospholipid was the highest by CO adn BT groups and the lowest by PO group. The incorporation of $\alpha$-linolenic acid in colonic mucosal phospholipid in perilla oil group was negatively correlated to the content of AA. Dietary level of C18 : 2 might not be the only controlling factor for the production of eicosanoids in colonic mucosa layer and might function with $\omega$3 fatty acids. The level of DAG was significanlty lower in PO group than that of BT group. Therefore, $\omega$3 $\alpha$-linolenic acid rich perilla oil could be very important dietary sourec in controlling eicosanoid production DAG level in cloln and recommenced to use more often in meal preparation to reduce the risk factor against colon cancer.

  • PDF

디젤기관의 어유 연소에 관한 연구(배기에미션, 내구시험) (A Study on the Combustion of Fish Oil in a Diesel Engine (Exhaust Emission, Endurance Test))

  • 서정주
    • 수산해양기술연구
    • /
    • 제35권1호
    • /
    • pp.77-82
    • /
    • 1999
  • This study was conducted on the properties of exhaust emissions of diesel oil and fish oil blended with diesel oils using a direct injection diesel engine at different loads, and on the conditions of carbon deposits of diesel oil and 40% blend oil in the combustion chamber after 20 hours operation at $\frac{1]{2}$ load. The properties of exhaust emissions by fish oil blended with diesel oils showed no significant difference with diesel oil. However, soot emissions decreased, increasing the ratio of fish oil. Carbon deposits by fish oil blended with diesel oils were high level compared with diesel oil, which might be overcome by preheating of fuel oil and operating conditions.

  • PDF

저 커먼레일 압력에서 비에스테르화 바이오 디젤유의 연소특성 (Combustion Characteristic of Non-esterified Bio-diesel Oil at Lower Common Rail Pressure)

  • 이상득;고대권;정석호
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.11-17
    • /
    • 2013
  • Esterified bio-diesel oil is normally used as blend oil of 3% that and 97% diesel fuel in Korea. Since specifics of it is similar to that of diesel fuel, availability of non-esterified bio-diesel oil that has a lower expenses of manufacturing is worthy of attention. However, bio-diesel oil has a demerit which it emits typically more NOx emission than diesel fuel. In this study, characteristic tests using blending oil with 95% gas oil and 5% bio-diesel oil were achieved at lower common rail pressure in order to improve this demerit. It was noticed that non-esterified bio-diesel oil has more similar characteristics to diesel fuel than esterified bio-diesel oil and it emits more NO emission by fuel NO mechanism.

바이오연료의 엔진 적용을 위한 실험적 기초연구 (Basic Experimental Study on the Application of Biofuel to a Diesel Engine)

  • 염정국
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1163-1168
    • /
    • 2011
  • 압축착화 방식의 디젤엔진은 스파크점화 방식의 가솔린 엔진에 비하여 열효율이 높아 연비가 향상되고 그 결과 $CO_2$ 저감효과도 높다. 또한 디젤엔진은 점화계통 장치의 불필요 등 기존 엔진의 개조비용이 적어 세탄가가 높은 바이오연료의 적용엔진으로서 적합한 장점이 있다. 따라서 본 연구에서는 식물성 자트로파유, 대두유 2종의 바이오연료와 경유연료의 분무특성을 비교 분석하였다. 실험변수로서는 분사압력과 자트로파 연료의 경우는 혼합비율(BD3, BD5, BD20)을 달리하였다. 분사압력은 500bar, 1000bar, 1500bar 및 1600bar로 설정하고 분사기간은 500ms로 동일하게 하였다. 본 연구의 결과로서, 사용한 바이오디젤 연료의 종류 및 분사압력 변화에 대한 분무거동특성(분무각)의 변화는 뚜렷하지 않으나, 고압분사의 경우가 분무각이 약간 감소하는 결과를 얻을 수 있었다.

우지-해바라기유 오일혼합 바이오디젤의 전환 특성과 동점도 처리에 따른 오일혼합 바이오디젤의 동점도 변화 특성 (Conversion Characteristics on Beef-Tallow and Sunflower Oil Blend Biodiesel and its Treatment Method to Reduce Kinematic Viscosity)

  • 우덕감
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.380-389
    • /
    • 2020
  • 포화지방산 함량이 높은 우지와 불포화지방산 함량이 높은 식물성 유지인 해바라기유를 혼합한 혼합오일의 바이오디젤 전환특성을 규명하고 연료특성을 분석하였다. 다변량분산분석을 이용하여 도출한 기여율로 각 실험변수 (메탄올/유지 몰비, 오일혼합비) 가 바이오디젤 전환에 미치는 영향을 규명하였다. 또한, 바이오디젤의 고점도 문제를 해결하기 위해 가열과 초음파 조사의 방법을 적용하여 동점도 감소효과를 검증하였다. 연료별 온도 도와 동점도간의 상관관계식을 통해 동점도 감소를 위한 연료별 최적 온도를 도출하였다. 그 결과, 바이오디젤 전환율은 오일 혼합비 TASU7, 메탄올/유지 몰비 10에서 가장 우수한 것으로 나타났고 지방산 조성에 따라 연료특성에 차이가 있었다. 또한, 우지, 해바라기유 오일 혼합 바이오디젤의 연료특성 분석 결과 바이오디젤의 품질기준을 만족하는 것으로 나타났다. 바이오디젤의 고점도를 해결하기 위한 동점도 실험 결과 가열 방법의 동점도 감소 효과가 초음파 조사 방법에 비해 우수한 것으로 나타나 간단한 가열장치로 바이오디젤의 고점도를 해결할 수 있음을 확인하였다.