• Title/Summary/Keyword: blastomere

Search Result 91, Processing Time 0.03 seconds

Effects of Electrostimulation on In Vitro Development Ability of Single 4-cell Blastomeres and Oocyte Activation in Porcine (돼지에 있어서 4-세포기 분할구의 체외발생능과 난모세포의 활성화에 미치는 전기자극의 효과)

  • ;V.G. Pursel
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.3
    • /
    • pp.239-250
    • /
    • 1996
  • The objective of the present experiments were to determine whether micromanipulative and electro-stimulation conditions for blastomere survival overlapped those for oocyte activation in porcine. Eggs selected for in vitro development potential of blastomeres isolated from 4-cell embryos and oocyte activation by electrostimulation were equilibrated for 5~10 min, in 0.3M sucrose solution containing 7.5$\mu\textrm{g}$/ml cytochalasin B, and then electrostimulated for 30$\mu$sec using one pulse of 100, 120, 150 or 180 volts DC with electrodes 0.2mm apart. Single blastomeres were inserted into empty zona pellucida prior to electrostimulaticn. Then they were cultured in 20${mu}ell$ drops of fresh BECM to observe their developmental ability in vitro in a humidified incubat or at 38.5$^{\circ}C$. The results obtained from these experiments are as follows : 1. When one pulse of 100, 120, 150 or 180 volts DC for 30$\mu$sec were applied to porcine oocytes having the slit formed on zona pellucida for activation, activation rates were 65.1, 66.7, 70.7 and 91.7%, respectively. Higher activation rate was observed in 180V. 2. Infact oocytes incubated for 30 min, in 0.3M sucrose solution after electrostimulation were significantally different from control group with increasing of voltages(p<0.05). When voltages used for electrostimulation were increased, activation rates of oocytes were improved in all treatment groups. 3. When zona punctured-oocytes were only electrostimulated, or incubated in 0.3M sucrose solution for 30 min. after electrostimulation at 180 volt DC, activation rates were 90.5 and 95.5%, respectively. And activation rates of zona punctured-oocytes were significantly different from the groups for which zona pellucida was not punctured(P<0.05). 4. When single blastomeres form 4-cell transferred into empty zona pellucida were incubated for 0, 15 and 30 min. in 0.3M sucrose solution after electrostimulation using one pulse of 180 volt DC for 30 $\mu$sec, developmental rates of electrostimulated-single blastomeres to blastocyst were 72.5, 59.0 and 51.2%, respectively, and the ratio of control group developed to blastocyst were 80.0%. 5. The average cell number in electrostimulated-blastomeres developed to blastocyst were 7.9~10.8, and reduced than the cell number in diploid control ; Also cell number decreased with increasing of voltages. The results of these experiments indicate that the optimal condition for achieving in vitro developmental ability of single 4-cell blastomeres and oocyte activatin is 1 pulse, duration 30 $\mu$sec. in 180 volt, and incubation of blastomeres and oocytes in 0.3M sucrose solution after electrostimulation was not significantally different from another treatment groups. The results also show that this condition is suitable for nuclear transplantation using porcine eggs.

  • PDF

Study on Production of Cloned Animals by Recycling Nuclear Transplantation III. Production of Third Generation Cloned Embryos in Rabbits (반복핵이식에 의한 복제동물 생산에 관한 연구 III. 토끼에서 제3세대 복제수정란의 생산)

  • Lee Hyo-jong;Jeon Byeong-gyun;Yin Xi-jun;Park Choong-saeng;Choe Sang-yong;Yun Chang-hyun;Kang Dae-jin
    • Journal of Veterinary Clinics
    • /
    • v.12 no.1
    • /
    • pp.877-886
    • /
    • 1995
  • The recycling nuclear transplantation(NT) technique has the powerful potential of producing a large number of genetically identical embryos and offsprings from one embryo. Multiple generational cloning by this technique utilizes the NT embryo itself as the donor for the next generation of cloning. In this experiment, we have produced the third generational cloned embryos by recycling NT. Further we examined comparatively the electrofusion rate and in vitro developmental potential in the cloned embryos of the first second and third generations. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulberco's phosphate buffered saline containing 10 % fetal calf serum(FCS) at 47 hours after hCG injection. In the first generation NT, the nuclear donor embryos were synchronized in the phase of Gl/S transition of 32-cell stage. The first and second generation NT embryos developed to 16-cell were used as donor nuclei for second and third generation. The recipient cytoplasms were utilized the oocytes collected at 14 hours after hCG injection, following revoming the nucleus and the first polar body by micromanipulation. The separated blastomeres were injected into the enucleated recipient oocytes by micromanipulation and were fused by electrical stimulation. The electrofusion rate was seen to be 78.0, 88.0 and 90.3 % in the first second and third generation NT rabbit embryos, respectively. The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10 % FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. The in vitro developmental potential to blastocyst stage was significantly(P<0.05) decreased in the third(7.2 %) generation NT embryos compared to the first(53.1 %) and second(16.1 %) generation NT embryos. Following in vitro development to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The mean blastomere numbers and cell cycle numbers of NT embryos during the culture period were significantly(p<0.05) decreased in the second(93.9 cells and 6.55 cylces) and third(81.5 cells and 1.35 cylces) generation, compared to the first(189.9 cells and 7.55 cylces) generation.

  • PDF

Sperm-Mediated Gene Transfer by Injection of Sperm or Sperm Head into Porcine Oocytes

  • S.Y. Ahn;Lee, H.T.;K. S. Chung
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.56-56
    • /
    • 2001
  • The exogenous gene transfer by intracytoplasmic sperm injection (ICSI) procedure has been recently used to produce transgenic mice and pigs. Sperm-mediated DNA transfer has the potential to markedly simplify the generation of transgenic animals. This method may serve as an alternative to the pronucleus injection of DNA for the production of transgenic pigs. Therefore, in this study, we investigated the expression of transgene after co-injection of spermatozoon or sperm head with green fluorescent protein (GFP) gene into in vitro matured porcine oocytes. Spermatozoon and sperm head, that was obtained by sonication, were treated with 0.03% Triton X-100 to remove the membrane. They were preincubated with linearized pEGFP-N1 for 1 min, and then embryos cultured NCSU23 medium for 2.5 days after co-injected of sperm and DNA. We monitored expression of GFP in embryos under epifluorescent microscope. The remove of sperm membrane did not alter the developmental competence of embryos after ICSI. At 7 days following injection, the rates of blastocysts following injection of intact sperm (15.0%), and of sperm with disrupted membrane (14.2%) were higher than that following IVF (10.0%). Porcine oocytes injected with sperm which co-cultured with DNA concentration of 1, 0.1, and 0.01 ng were 60, 65.7 and 75% and 18.5, 37.4 and 22.2% for rates of cleavage and GFP expression, respectively. In vitro matured porcine oocytes injected with sperm and isolated sperm head resulted in 69 and 59.7% of cleavage rates, respectively The rates of embryo GFP expressed did not significantly different between sperm (20.4%) and sperm head (20.0%) injection. The transgenic embryos with the clusters of positive blastomeres were observed under fluorescent microscope. Most of embryos expressed GFP gene showed mosaicism. They showed GFP expression at 1/4, 2/4 and 3/4 of blastomeres at the 4-cell stage. Among these 4-cell embryos, the expression rate of 1/4 blastomere group (54.6%) was higher than the other groups (15.3-30.7%). These results indicate that membrane disrupted sperm could attach with exogenous DNA, and that this procedure may be useful to introduce foreign gene into porcine oocytes. Therefore, our data suggest that the ICSI car be a useful tool to efficiently produce transgenic pig as well as other mammals.

  • PDF

p66Shc in sheep preimplantation embryos: Expression and regulation of oxidative stress through the manganese superoxide dismutase-reactive oxygen species metabolic pathway

  • Tong Zhang;Jiaxin Zhang;Ruilan Li
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1022-1033
    • /
    • 2023
  • Objective: p66Shc, a 66 kDa protein isoform encoded by the proto-oncogene SHC, is an essential intracellular redox homeostasis regulatory enzyme that is involved in the regulation of cellular oxidative stress, apoptosis induction and the occurrence of multiple age-related diseases. This study investigated the expression profile and functional characteristics of p66Shc during preimplantation embryo development in sheep. Methods: The expression pattern of p66Shc during preimplantation embryo development in sheep at the mRNA and protein levels were studied by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence staining. The effect of p66Shc knockdown on the developmental potential were evaluated by cleavage rate, morula rate and blastocyst rate. The effect of p66Shc deficiency on reactive oxygen species (ROS) production, DNA oxidative damage and the expression of antioxidant enzymes (e.g., catalase and manganese superoxide dismutase [MnSOD]) were also investigated by immunofluorescence staining. Results: Our results showed that p66Shc mRNA and protein were expressed in all stages of sheep early embryos and that p66Shc mRNA was significantly downregulated in the 4-to 8-cell stage (p<0.05) and significantly upregulated in the morula and blastocyst stages after embryonic genome activation (EGA) (p<0.05). Immunofluorescence staining showed that the p66Shc protein was mainly located in the peripheral region of the blastomere cytoplasm at different stages of preimplantation embryonic development. Notably, serine (Ser36)-phosphorylated p66Shc localized only in the cytoplasm during the 2- to 8-cell stage prior to EGA, while phosphorylated (Ser36) p66Shc localized not only in the cytoplasm but also predominantly in the nucleus after EGA. RNAi-mediated silencing of p66Shc via microinjection of p66Shc siRNA into sheep zygotes resulted in significant decreases in p66Shc mRNA and protein levels (p<0.05). Knockdown of p66Shc resulted in significant declines in the levels of intracellular ROS (p<0.05) and the DNA damage marker 8-hydroxy2'-deoxyguanosine (p<0.05), markedly increased MnSOD levels (p<0.05) and resulted in a tendency to develop to the morula stage. Conclusion: These results indicate that p66Shc is involved in the metabolic regulation of ROS production and DNA oxidative damage during sheep early embryonic development.

ICM - Trophectoderm Cell Numbers of Mouse IVF/IVC Blastocysts (체외생산된 생쥐 배반포기배의 ICM과 Trophectoderm 세포수에 관한 연구)

  • Kim, E.Y.;Kim, S.E.;Uhm, S.J.;Yoon, S.H.;Park, S.P.;Chung, K.S.;Lim, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1996
  • This work has been carried out to examine the number of Total, ICM and TE cells of F1 mouse blastcysts at day 4 after IVF by differential labelling of the nuclei with polynucleotide-specific fluorochromes and to obtain a fundamental information of preimplantation mouse embryo development. Blastocysts produced by superovulated B6CBA F1(C57BL/${\times}$CBA) eggs were inseminated with $1{\times}10^6$spermatozoa/ml and cultured in M16 medium at $37^{\circ}C$, 5% $CO_2$ incubator for 95hrs. Blastocysts were classified as early, middle, expanded and hatching stage according to the developmental morphology; blastocoel expansion and zona thickness. The results obtained in these experiments were summarized as follows; 1) The development rate of blastocysts at 95hrs after IVF was 86.7% and classified blastocysts to early, middle, expanded and hatching were 16.3%, 18.9%, 10.5% and 40.9%, respectively. 2) The numbers of total blastomere using bisbenzimide in the classified blastocysts to early, middle, expanded and hatching were 35.6${\pm}$1O.4, 49.4${\pm}$8.6, 60.8${\pm}$1O.7 and 62.7${\pm}$13.9, respectively. 3) In ICM and TE cell number by using differential labelling with polynucleotide-specific fluorochrome in the classified blastocysts to early, middle, expanded and hatching; ICM numbers were 9.6${\pm}$3.0, 13.6${\pm}$3.9, 16.0${\pm}$3.3 and 19.5${\pm}$4.6, respectively and TE cell numbers were 30.6${\pm}$5.1, 39.9${\pm}$5.8, 42.2${\pm}$8.1 and 43.7${\pm}$11.1, respectively. These results showed the same increase pattern according to development advance level. Also, when compared with the results of total count were obtained between bisbenzimide only and differential labelling, both of them showed the same increase pattern according to development level and at the same time their cell numbers were almost the same. So, rapid and simple cell count method using differential labelling can be used for the examination of later preimplantation development or as an indicator of embryo quality according to the variables of culture conditions.

  • PDF

ICM-Trophectoderm Cell Numbers of Bovine IVM/IVF/IVC Blastocysts (체외성숙, 수정 및 체외배양에서 생산된 소 배반포기배의 ICM과 Trophectoderm세포수에 관한 연구)

  • 김은영;엄상준;김선의;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 1996
  • The objective of this study was to examine the cell number of Total, ICM and TE cells of bovine blastocysts according to development progression cultured in CR1 medium, which was reported as successfully supporting medium for preimplantaion bovine embryo development to the blastocyst stage, by differential labelling of the nuclei with immunosurgery and polynucleot-ide-specific fluorochromes. Blastocysts were obtained at day 8 after in vitro fertilization and classified to early, middle, expanded stage according to the developmental morphology; blastocoel expansion and zona thickness. Also, bias tocysts in the same category were divided into two parts to check the Total cell number by using bisbenzimide only and ICM, TE and Total cell number by using immunosurgery and two polynucleotide-specific fluorochromes. 1) The development rate of blastocysts at day 8 after in vitro fertilization was 29.3% and classified bIas tocysts to early, middle, expanded and hatching stage were 8.7, 9.9, 7.6 and 3.1%, respectively. 2) The numbers of total blastomere using bisbenzimide in the classified blastocysts to early, middie and expanded were 46.9${\pm}$8.6, 66.2${\pm}$12.5 and 122.8 ${\pm}$ 14.4, respectively. This indicated that CR1 is a appropriate culture medium for bovine embryo development. 3) The count of ICM and TE cell number by using differential labelling with immunosurgery and polynucleotide-specific fluorochromes in the classified blastocysts to early, middle and expanded; ICM cell numbers of were 12.8${\pm}$5.9, 26.3${\pm}$8.4 and 35.5${\pm}$15.0, respectively and TE cell numbers were 30.5${\pm}$5.0, 4 41.3${\pm}$8.2 and 81.1${\pm}$13.4, respectively. These results presented that the increase of ICM and TE cell numbers averaged two and three doublings between early and expanded blastocyst stage and also total cell number counted from ICM nuclei and TE nuclei by using differential label-ling showed the increase pattern with development advance level and the results were similar to total cell number obtained from bisbenzimide treatment only. Therefore, the differential labelling of ICM and TE nuclei in situ is a very useful technique to evaluate embryo qualities and can be used as an indicator on study of preim-plantation embryo development.

  • PDF

Effects of Manipulation Conditions on Development of Nuclear Transplant Bovine Embryos Derived from In Vitro Matured Oocytes (미세조작조건이 소 핵이식배의 발달에 미치는 영향)

  • 최상용;노규진;공일근;송상현;조성근;박준규;이효종;박충생
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.3
    • /
    • pp.293-302
    • /
    • 1997
  • Follicular oocytes of Grade I and II were collected from 2~6 mm ovarian follicles and matured in vitro (IVM) for 24 hrs in TCM-199 su, pp.emented with 35$\mu\textrm{g}$/ml FSH, 10$\mu\textrm{g}$/ml LH, and 1$\mu\textrm{g}$/ml estradiol-17$\beta$ at 39$^{\circ}C$ under 5% CO2 in air. They were fretilized in vitro (IVF) by epididymal spermatozoa capacitated with heparin for 12 hrs. The zygotes were then co-cultured in vitro with bovine oviducted epithelial cells (BOEC) for 7 to 9 days. The optimal time for IVM, the successful enucleation of IVM oocytes by micromanipulation at different oocyte ages after IVM, and the ideal culture system for IVM for effective IVF and in vitro development of IVM-IVF embryos was examined for in vitro production of nuclear recipient oocytes and nuclear donor embryos. To improve the efficiency of nuclear transplantation (NT) of IVF embryo into IVM follicular oocytes, this study evaluated the optimal electric condition and oocytes age for activation of IVM oocytes and in vitro development of NT embryos. In vitro development of NT embryos with preactivation or non-preactivation in enucleation oocytes, cell number of IVN-IVF embryos, and NT embryos wre also examined. The results obtained were as follows; 1. The most suitable enucleation time was at 24 hpm (83.3%) rather than that of 28 hpm(69.6%) and 32 hpm(50.0%). 2. There was no difference among the fusion rates of NT embryos at the voltages of 0.75, 1.0 and 1.5 kV/cm, but the in vitro development rates to morule and blastocyst were significantly (P<0.05) higher at the voltage of 0.75(12.5%) and 1.0kV/cm (12.6%) compared to 1.5kV/cm(0%). 3. No significant difference in activation rates were seen in NT embryos stimulated for 30, 60 and 120 $\mu$sec (71.7, 85.2 and 71.9%, respectively), but the in vitro development rates to morulae and blastocyst were significantly (P<0.05) higher in the oocytes stimulated for 30 $\mu$sec (11.6%) and 60 $\mu$sec(10.7%) than 120 $\mu$sec(0.0%). 4. The fusion rates (71.0 and 87.3%) and the in vitro development rates (9.1 and 12.7%) to morula and blastocyst were seen in the NT embryos stimulated at 28 and 32 hpm under the condition of 1.0 kV/ml, 60 $\mu$sec. However, at 24 hpm the fusion rates were 64.8% and the in vitro development to morula and blastocyst were not seen. 5. The fusion rates between the 8~12, 13~17 and 18~22-cell stage of IVM-IVF embryos were not significantly different. The in vitro development rates of the fused embryos to morula and blastocyst which were received from a blastomere of 8~12, 13~17 and 18~22-cell stages of IVM-IVF embryos were 14.9, 8.3 and 6.5%, respectively. 6. The in vitro development rate of the enucleated recipient oocytes with preactivation (24.2%) to morula and blastocyst was significantly (P<0.05) higher than that of non-preactivation (12.8%). 7. The cell numbers of NT blastocyst and IVM-IVF blastocyst cultured during 7~9 days were 63$\pm$11 and 119$\pm$23, and then their the mean cell cycle number were 5.98 and 6.89, respectively.

  • PDF

Human Blastocysts;The Correlation Between Embryo Microscopical Assessments and Their Cell Number (인간 배반포기 배의 현미경적 분류와 세포수의 상관관계에 관한 연구)

  • Kim, E.Y.;Uhm, S.J.;Kim, M.K.;Yoon, S.H.;Park, S.P.;Chung, K.S.;Lim, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.319-326
    • /
    • 1996
  • The objective of this study was to investigate correlation between the morphology by microscopic assessments of surplus blastocysts produced in human IVF program and their cell number obtained by differential labelling method. For these experiments, 76 surplus human blastocysts were obtained from 36 patients on day 5 after IVF, the embryos were classified to early (ErB), early expanding (EEB), middle expanding (MEB), expanded blastocyst (EdB) according to their blastocoel expansion and zona thickness. When the ovum size and zona thickness of the classified blastocysts were measured using micrometer, although the embryos were produced in the same culture condition, there were significant variances in ovum size ($148.8 217.6{\mu}m$) and zona thickness ($1.2-14.4{\mu}m$). Total blastomere cell number counted after hoechst staining was increased by two to three fold during the transition period from ErB ($39.1{\pm}3.6$) to EdB ($(89.6{\pm}3.3)$) stage on day 5 after IVF. ICM ($11.9{\pm}1.8-22.2{\pm}4.3$) and TE ($24.5{\pm}3.6-70.0{\pm}7.7$) cell numbers using differential labelling were also showed the increased pattern according to the developmental level. Especially, EdB which showed poor ICM morphologically also indicated the low ICM cell number after differential labelling. This demonstrated that there is good correlation between the morphological assessment and the cell number. The count of ICM and TE nuclei using differential labelling can be used as an important criterion, if it is accompanied with morphological assessments, in selecting the better embryos for improving the pregnancy rates in human blastocyst transfer program.

  • PDF

Effects of Coculture on Development of Biopsied Mouse Embryos as a Preclinical Model for Preimplantation Genetic Diagnosis of Human Embryos (생쥐 모델을 이용한 배아의 할구 생검법과 할구가 생검된 배아의 배양시 공배양 효과에 관한 연구: 인간에서의 착상 전 유전진단 기술 개발을 위한 동물실험 모델의 개발)

  • Kim, S.H.;Ryu, B.Y.;Jee, B.C.;Choi, S.M.;Kim, H.S.;Pang, M.G.;Oh, S.K.;Suh, C.S.;Choi, Y.M.;Kim, J.G.;Moon, S.Y.;Lee, J.Y.;Chae, H.D.;Kim, C.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • The genetic defects in human gametes and embryos can cause adverse effects on overall reproductive events. Biopsy of embryos for preimplantation genetic diagnosis (PGD) offers a new possibility of having children free of the genetic disease. In addition, advanced embryo culture method may enhance the effectiveness of embryo biopsy for the practical application of PGD. This experimental study was undertaken to evaluate the effects of coculture on the development in vitro of biopsied mouse embryos as a preclinical model for PGD of human embryos. Embryos were obtained after in vitro fertilization (IVF) from F1 hybrid mice (C57BLfemale/CBAmale). Using micromanipulation, 1, 2, 3 or 4 blastomeres of 8-cell stage embryos were aspirated through a hole made in the zona pellucida by zona drilling (ZD) with acidic Tyrode's solution (ATS). After biopsy of blastomeres, embryos were cultured in vitro for 110 hours in Ham's F-10 supplemented with 0.4% BSA or cocultured on the monolayer of Vero cells in the same medium. The frequence of blastocyst formation were recorded, and the embryos beyond blastocyst stage were stained with 10% Giemsa to count the total number of nuclei in each embryo. There was no significant difference in the blastocyst formation between the zona intact control group and the zona drilling (ZD) only, or biopsied groups. The hatching rate of all the treatment groups except 4/8 group was significantly higher than that of control group. In all the treatment groups, there was a significant reduction in the mean cell number of embryos beyond blastocyst stage ($50.2{\pm}14.0$ in control group vs. $41.2{\pm}7.9$ in ZD, $39.3{\pm}8.8$ in 7/8, $29.7{\pm}6.4$ in 6/8, $25.1{\pm}5.7$ in 5/8, and $22.1{\pm}4.3$ in 4/8 groups, p<0.05). When the same treatments were followed by coculture with Vero cells, a similar pattern was seen in the blastocyst formation and the hatching rate. However, in all the treatment groups, there was a significant increase in the mean cell number of embryos beyond blastocyst stage with coculture, compared with the parallel groups without coculture. In the cleavage rate of biopsied blastomeres cultured for 110 hours after IVF, there was no significant difference between coculture and non-coculture groups (87.2% vs. 78.7%). However, the mean cell number of embryos developed from the biopsied blastomeres was significantly higher in coculture group ($11.5{\pm}4.7\;vs.\;5.9{\pm}1.9$, p<0.05). In conclusion, biopsy of mouse embryos after ZD with ATS is a safe and highly efficient method for PGD, and coculture with Vero cells showed a positive effect on the development in vitro of biopsied mouse embryos and blastomeres as a preclinical model for PGD of human embryos.

  • PDF

Effects of Activation Regimens of Recipient Cytoplasm, Culture Condition of Donor Embryos and Size of Blastomeres on Development of Reconstituted Bovine Embryos (수핵 난자의 활성화 방법과 공핵 수정란의 배양체계 및 할구의 크기가 소 핵이식 수정란의 발달에 미치는 영향)

  • 심보웅;조성근;이효종;박충생;최상용
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.4
    • /
    • pp.425-435
    • /
    • 1998
  • To improve the efficiency of nuclear transplantation in bovine, in this study the development in vitro of nuclear transferred (NT) embryos was compared by different activation regimens of the enucleated oocytes. The effect of developmental stage and culture system of donor nuclei on fusion and development in vitro of NT embryos were also evaluated. Oocytes were collected from Hanwoo ovaries obtained from slaughterhouse and matured in Ham's F-10 supplemented with hormones. After 20~22 h maturation, the oocytes were vortexed to be free from cumulus cells and subsequently their nucleus and the first polar body were removed. Enucleated oocytes were divided into 3 groups for activation; the oocytes of group I were activated with ionomycin for 5 min and subsequently incubated in 6-dimetylarninopurine (DMAP) for 4 h, Those of group II were treated with DMAP for 4 h at 39 h after onset of in vitro maturation (IVM) and those of group III were kept in room temperature ($25^{\circ}C$) for 3 h at 39 h after onset of IVM. After in vitro fertilization (IVF) the embryos for muclear donor were cultured either by group culture (20 embryos /50 ${mu}ell$ drop) or individually (1 embryo /50 ${mu}ell$ drop) for 4 day and 5 day. At day 4 and 5 after IVF, blastomeres were separated in calcium-magnesium free medium, and then classified into small (day 5: $\leq$ 38 ${\mu}{\textrm}{m}$, day 4: $\leq$ 46 ${\mu}{\textrm}{m}$) and large (day 5 : $\geq$ 38 ${\mu}{\textrm}{m}$, day 4 ; $\geq$ 46 ${\mu}{\textrm}{m}$). The separated blastomeres were replaced into enucleated and activated recipient cytoplasm. The blastomere-oocyte complexes were fused by electrically. The NT embryos were cultured in TCM-199 containing 10% FCS in 39$^{\circ}C$, 5% $CO_2$ incubator for 7 day. The results obtained were summarized as follows; There were no differences in fusion and development to blastocyst between groups as group I (68%, 10%), group II (75%, 14%) and group III (73%, 9%), respectively. However, the cell number in blastocyst of NT embryos in group III were significantly fewer than in the other groups (P<0.05). No differences in fusion and development to blastocyst were found between individual or group cultured and between small or large blastomeres of day 4 and day 5 donor embryos. From these results, it was concluded that the combination of ionomycin and DMAP, or treatment of DMAP at 39 h after onset of IVM were useful for the efficient of production of NT bovine embryos, and the individual cultured embryos could be simply used as donor nuclei for NT bovine embryo.

  • PDF