• Title/Summary/Keyword: blast-furnace slag sand

Search Result 82, Processing Time 0.024 seconds

An Experimental study on Explosive spalling of Concrete According to Kinds of Fine Aggregate and Admixture (잔골재 및 혼화재 종류에 따른 콘크리트의 폭열 성상에 관한 실험적 연구)

  • 장재봉;김갑수;김재환;김용로;권영진;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.667-670
    • /
    • 2003
  • The purpose of this study is to present data for the reusing, reinforcement and estimation of safety of the RC structure damaged by fire, and for the prevention of explosive spalling by checking the character of explosive spalling according to kinds of fine aggregate, admixture and water-cement ratios. The materials used fine aggregates were sea sand, crushed sand and recycled sand, and the admixtures were fly ash and blast-furnace slag. Also the water-cement ratios was 55% and 30.5%. After those were heated respectively for 30 and 60 minutes in accordance with Standard Time-Temperature Curve. And then conditions of explosive spalling were divided into five grades, and characters of explosive spalling were investigated.

  • PDF

The Influence of the Volume Contents of Sand in Mortar on the Properties of Self Compacting Concrete (잔골재 용적비가 고유동 콘크리트의 성질에 미치는 영향)

  • Choi Jae-Jin;Yoo Jung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.755-758
    • /
    • 2004
  • Self-compactability is defined as a capability of concrete to be uniformly filled and compacted in every corners of formwork by its self-weight without vibration during placing. To evaluate the self compactability of self compacting concrete, the slump flow, the time of slump flow at 500mm and U-box apparatus testing methods are used. In this research, the fresh and hardened properties of self compacting concrete using ground granulated blast furnace slag as a part of cement were investigated for the volume contents of sand in the mortar. The workability, flowing characteristics, air content and compressive strength of concrete were tested and the results were compared with the different volume contents of sand in the mortar. In the experiment, we acquired satisfactory results at the point of flowing characteristics and strengths of self compacting concrete.

  • PDF

A Study on the Utilization of Blast Furnace Slag(I) (Grain-Growth of Slag-Glass) (고노슬라그의 이용에 관한 연구(I) (슬라그유리의 결정성장))

  • Rhee, Jhun;Chi, Ung-Up;Han, Ki-Sung;Choi, Sang-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.3
    • /
    • pp.157-167
    • /
    • 1978
  • The batch compositions and physical properties of slag-ceramics were studied with respect to their formability from the molten state and conditions of nucleation and crystal growth treatment. The selected batch compositions for nucleation and growth studies were slag, 56%; silica sand, 28%; $Na_2O+MgO$, 8% and $TiO_2+$chromite, 8%. The optimum nucleation condition was the temperature of 75$0^{\circ}C$ with 6 hrs. holding time and the optimum growth condition was the temperature 975$^{\circ}C$ with zero holding time. The slag-ceramics prepared under the above conditions showed the best developed microtexture. The grown crystals were identified as diopside with the average grain size of 5.7$\mu\textrm{m}$, and the amount of crystal grown were about 53% by weight. The prepared specimens of slag-ceramics showed the microhardness, 793kg/$\textrm{mm}^2$; MOR, 1,050 kg/$\textrm{cm}^2$ and thermal expansion coefficient, $85{\div}10^{-7}$cm/cm/$^{\circ}C$($25^{\circ}C$~$700^{\circ}C$).

  • PDF

A Beam-Column Analysis of Laterally Loaded Piles (횡하중을 받는 말뚝의 Beam-Column 해석)

  • Baek, Won-Jin;Lee, Kang-Il;Lee, Jin-Soo;Kim, Ju-Hyun;Song, Byung-Gwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1212-1217
    • /
    • 2008
  • In this study, in order to clarify the effect of the direction of cyclic shear on the post-earthquake settlement the multi-directional shear tests were carried out for Toyoura Japan standard sand, Genkai natural sand and the Granulated Blast Furnace Slag (GBFS). In a series of tests, number of strain cycles was changed as n=5-200 and the shear strain amplitude varied from 0.1% to 1.0%. The relative density was also changed as Dr=50, 60 and 70%. From the test results for Toyoura sand and GBFS, it is clarified that the post cyclic settlement is relatively large at the small relative density and becomes large with the shear strain amplitude. When the influence of the direction of cyclic shear is decreases, the post cyclic settlement strain for Toyoura sand is converged to a constant value, but the GBFS is increased with the number of strain cycles.

  • PDF

Evaluation of protective coatings for geopolymer mortar under aggressive environment

  • Rathinam, Kumutha;Kanagarajan, Vijai;Banu, Sara
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.219-231
    • /
    • 2020
  • The aim of this study is to investigate the durability of fly ash based geopolymer mortar with and without protective coatings in aggressive chemical environments. The source materials for geopolymer are Fly ash and Ground Granulated Blast furnace Slag (GGBS) and they are considered in the combination of 80% & 20% respectively. Two Molarities of NaOH solution were considered such as 8M and 10M. The ratio of binder to sand and Sodium silicate to Sodium hydroxide solution (Na2SiO3/NaOH) are taken as 1:2 and 2 respectively. The alkaline liquid to binder ratio is 0.4. Compressive strength tests were conducted at various ages of the mortar specimens. In order to evaluate the performance of coatings on geopolymer mortar under aggressive chemical environment, the mortar specimens were coated with two different types of coatings such as epoxy and Acrylic. They were then subjected to different chemical environments by immersing them in 10% standard solutions of each ammonium nitrate, sodium chloride and sulphuric acid. Drop in compressive strength as a result of chemical exposure was considered as a measure of chemical attack and the drop in compressive strength was measured after 30 and 60 days of chemical exposure. The compressive strength results following chemical exposure indicated that the specimens containing the acrylic coating proved to be more resistant to chemical attacks. The control specimen without coating showed a much greater degree of deterioration. Therefore, the application of acrylic coating was invariably much more effective in improving the compressive strength as well as the resistance of mortar against chemical attacks. The results also indicated that among all the aggressive attacks, the sulphate environment has the most adverse effect in terms of lowering the strength.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

A Study on the Influence of Kinds of Mineral Admixture on the Properties of Early-Strength Development of Mortar (모르타르의 조기강도 발현 특성에 미치는 혼화재 종류의 영향에 관한 연구)

  • Kim, Sung-Su;Choi, Se-Jin;Jeong, Yong;Lee, Seong-Yeun;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.889-892
    • /
    • 2006
  • In this study, we compared and analysed the early strength properties of mortar according to the kinds and replacement ratio of mineral admixture to select the kinds and replacement ratio of mineral admixture of high early strength concrete. For this purpose, mortar mixtures according to the kinds(FA, MK, ZR, BFS, DM) and replacement ratio(0, 2, 4% by volume of sand) of mineral admixture were selected. From our test data, early-age compressive strength decreased in accordance with the increase of replacement ratio of fly-ash(FA) & blast furnace slag powder(BSF) and, in case of addintion admixture, early-age compressive strength of with containing ZR & BFS appeared higher compared with containing other mineral admixture.

  • PDF

Influence of mineral by-products on compressive strength and microstructure of concrete at high temperature

  • Sahani, Ashok Kr.;Samanta, Amiya K.;Roy, Dilip K. Singha
    • Advances in concrete construction
    • /
    • v.7 no.4
    • /
    • pp.263-275
    • /
    • 2019
  • In the present work, Granulated Blast Furnace Slag (GBFS) and Fly ash (FA) were used as partial replacement of Natural Sand (NS) and Ordinary Portland Cement (OPC) by weight. One control mix, one with GBFS, three with FA and three with GBFS-FA combined mixes were prepared. Replacements were 50% GBFS with NS and 20%, 30% and 40% FA with OPC. Preliminary investigation on development of compressive strength was carried out at 7, 28 and 90 days to ensure sustainability of waste materials in concrete matrix at room temperature. After 90days, thermo-mechanical study was performed on the specimen for a temperature regime of $200^{\circ}-1000^{\circ}C$ followed by furnace cooling. Weight loss, visual inspection along with colour change, residual compressive strength and microstructure analysis were performed to investigate the effect of replacement of GBFS and FA. Although adding waste mineral by-products enhanced the weight loss, their pozzolanicity and formation history at high temperature played a significant role in retaining higher residual compressive strength even up to $800^{\circ}C$. On detail microstructural study, it has been found that addition of FA and GBFS in concrete mix improved the density of concrete by development of extra calcium silicate gel before fire and restricts the development of micro-cracks at high temperature as well. In general, the authors are in favour of combined replacement mix in view of high volume mineral by-products utilization as fire protection.

Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding

  • Ouda, Ahmed S.
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.61-75
    • /
    • 2014
  • This study aimed to investigate the suitability of some concrete components for producing "high-performance heavy density concrete" using different types of aggregates that could enhances the shielding efficiency against ${\gamma}$-rays. 15 mixes were prepared using barite, magnetite, goethite and serpentine aggregates along with 10% silica fume, 20% fly ash and 30% blast furnace slag to total OPC content for each mix. The mixes were subjected to compressive strength at 7, 28 and 90 days. In some mixes, compressive strengths were also tested up to 90 days upon replacing sand with the fine portions of magnetite, barite and goethite. The mixes containing magnetite along with 10% SF reaches the highest compressive strength exceeding over M60 requirement by 14% after 28 days. Whereas, the compressive strength of concrete containing barite was very close to M60 and exceeds upon continuing for 90 days. Also, the compressive strength of high-performance concrete incorporating magnetite fine aggregate was significantly higher than that containing sand by 23%. On the other hand, concrete made with magnetite fine aggregate had higher physico-mechanical properties than that containing barite and goethite. High-performance concrete incorporating magnetite fine aggregate enhances the shielding efficiency against ${\gamma}$-rays.

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF