• Title/Summary/Keyword: blast analysis

Search Result 984, Processing Time 0.03 seconds

Heat of hydration characteristics on high-performance concrete for large dimensional tunnel linings (대단면 터널 라이닝 적용 고성능 콘크리트의 수화열 특성)

  • Min, Kyung-Hwan;Jung, Hyung-Chul;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • In this study, experiments of development and application of 50 MPa high-performance concrete are performed for large dimensional tunnel linings. In order to produce 50MPa high-performance concrete, eight optimal mixtures replacing with fly ash and ground granulated blast furnace slag up to 50 percent of type I Portland cement were selected then tests for mechanical properties and simple adiabatic temperature rise tests were carried out. And in order to assess the quantitative characteristics of heat of hydrations of developed mixtures, three mixtures that the type I Portland cement (OPC) and each one mixture of binary and ternary mixtures (BS30, F15S35) were reselected, then the adiabatic temperature rise tests and mock-up tests were performed. Consequently, the comparisons between the results of mock-up tests and finite element analysis can be enhanced the reliability of analyzing routines of thermal behaviours of the developed high-performance concrete.

Circumstellar Clumps in the Cassiopeia A Supernova Remnant: Prepared to be Shocked

  • Koo, Bon-Chul;Kim, Hyun-Jeong;Oh, Heeyoung;Raymond, John C.;Yoon, Sung-Chul;Lee, Yong-Hyun;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2020
  • Cassiopeia A (Cas A) is a young supernova remnant (SNR) where we observe the interaction of SNR blast wave with circumstellar medium. From the early optical studies, dense, slowly-moving, N-rich "quasi-stationary flocculi" (QSF) have been known. These are probably dense CNO-processed circumstellar knots that have been engulfed by the SNR blast wave. We have carried out near-infrared, high-resolution (R=45,000) spectroscopic observations of ~40 QSF, and here we present the result on a QSF knot (hereafter 'Knot 24') near the SNR boundary of Cas A. The average [Fe II] 1.644 um spectrum of Knot 24 has a remarkable shape with a narrow (~8 km/s) line superposed on the broad (~200 km/s) line emitted from shocked gas. The spatial morphology and the line parameters indicate that Knot 24 has been partially destroyed by a shock wave and that the narrow line is emitted from the unshocked material heated/ionized by the shock radiation. This is the first detection of the emission from the pristine circumstellar material of the Cas A supernova progenitor. We also detected H Br gamma and other [Fe II] lines corresponding to the narrow [Fe II] 1.644 um line. For the main clump where we can clearly identify the shock emission associated with the unshocked material, we analyze the observed line ratios using a shock model that includes radiative precursor. The analysis indicates that the majority of Fe in the unshocked material is in the gas phase, not depleted onto dust grains as in the general interstellar medium. We discuss the non-depletion of Fe in QSF and its implications on the immediate progenitor of the Cas A supernova.

  • PDF

Multiple effects of nano-silica on the pseudo-strain-hardening behavior of fiber-reinforced cementitious composites

  • Hossein Karimpour;Moosa Mazloom
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.467-484
    • /
    • 2023
  • Despite the significant features of fiber-reinforced cementitious composites (FRCCs), including better mechanical, fractural, and durability performance, their high content of cement has restricted their use in the construction industry. Although ground granulated blast furnace slag (GGBFS) is considered the main supplementary cementitious material, its slow pozzolanic reaction stands against its application. The addition of nano-sized mineral modifiers, including nano-silica (NS), is an alternative to address the drawbacks of using GGBFS. The main object of this empirical and numerical research is to examine the effect of NS on the strain-hardening behavior of cementitious composites; ten mixes were designed, and five levels of NS were considered. This study proposes a new method, using a four-point bending test to assess the use of nano-silica (NS) on the flexural behavior, first cracking strength, fracture energy, and micromechanical parameters including interfacial friction bond strength and maximum bridging stress. Digital image correlation (DIC) was used for monitoring the initiation and propagation of the cracks. In addition, to attain a deep comprehension of fiber/matrix interaction, scanning electron microscope (SEM) analysis was used. It was discovered that using nano-silica (NS) in cementitious materials results in an enhancement in the matrix toughness, which prevents multiple cracking and, therefore, strain-hardening. In addition, adding NS enhanced the interfacial transition zone between matrix and fiber, leading to a higher interfacial friction bond strength, which helps multiple cracking in the composite due to the hydrophobic nature of polypropylene (PP) fibers. The findings of this research provide insight into finding the optimum percent of NS in which both ductility and high tensile strength of the composites would be satisfied. As a concluding remark, a new criterion is proposed, showing that the optimum value of nano-silica is 2%. The findings and proposed method of this study can facilitate the design and utilization of green cementitious composites in structures.

Numerical Analysis on the Compressible Flow Characteristics of Supersonic Jet Caused by High-Pressure Pipe Rupture Using CFD (CFD를 이용한 고압파이프 파단 시 초음속제트의 압축성유동 특성에 관한 수치해석)

  • Jung, Jong-Kil;Kim, Kwang-Chu;Yoon, Jun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.649-657
    • /
    • 2017
  • A rupture in a high-pressure pipe causes the fluid in the pipe to be discharged in the atmosphere at a high speed resulting in a supersonic jet that generates the compressible flow. This supersonic jet may display complicated and unsteady behavior in general. In this study, Computational Fluid Dynamics (CFD) analysis was performed to investigate the compressible flow generated by a supersonic jet ejected from a high-pressure pipe. A Shear Stress Transport (SST) turbulence model was selected to analyze the unsteady nature of the flow, which depends upon the various gases as well as the diameter of the pipe. In the CFD analysis, the basic boundary conditions were assumed to be as follows: pipe of diameter 10 cm, jet pressure ratio of 5, and an inlet gas temperature of 300 K. During the analysis, the behavior of the shockwave generated by a supersonic jet was observed and it was found that the blast wave was generated indirectly. The pressure wave characteristics of hydrogen gas, which possesses the smallest molecular mass, showed the shortest distance to the safety zone. There were no significant difference observed for nitrogen gas, air, and oxygen gas, which have similar molecular mass. In addition, an increase in the diameter of the pipe resulted in the ejected impact caused by the increased flow rate to become larger and the zone of jet influence to extend further.

Epigenetic Regulation of Fungal Development and Pathogenesis in the Rice Blast Fungus

  • Jeon, Junhyun
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.11-11
    • /
    • 2014
  • Fungal pathogens have huge impact on health and economic wellbeing of human by causing life-threatening mycoses in immune-compromised patients or by destroying crop plants. A key determinant of fungal pathogenesis is their ability to undergo developmental change in response to host or environmental factors. Genetic pathways that regulate such morphological transitions and adaptation are therefore extensively studied during the last few decades. Given that epigenetic as well as genetic components play pivotal roles in development of plants and mammals, contribution of microbial epigenetic counterparts to this morphogenetic process is intriguing yet nearly unappreciated question to date. To bridge this gap in our knowledge, we set out to investigate histone modifications among epigenetic mechanisms that possibly regulate fungal adaptation and processes involved in pathogenesis of a model plant pathogenic fungus, Magnaporthe oryzae. M. oryzae is a causal agent of rice blast disease, which destroys 10 to 30% of the rice crop annually. Since the rice is the staple food for more than half of human population, the disease is a major threat to global food security. In addition to the socioeconomic impact of the disease it causes, the fungus is genetically tractable and can undergo well-defined morphological transitions including asexual spore production and appressorium (a specialized infection structure) formation in vitro, making it a model to study fungal development and pathogenicity. For functional and comparative analysis of histone modifications, a web-based database (dbHiMo) was constructed to archive and analyze histone modifying enzymes from eukaryotic species whose genome sequences are available. Histone modifying enzymes were identified applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 22,169 histone-modifying enzymes identified from 342 species including 214 fungal, 33 plants, and 77 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. Based on the database entries, functional analysis of genes encoding histone acetyltransferases and histone demethylases is under way. Here I provide examples of such analyses that show how histone acetylation and methylation is implicated in regulating important aspects of fungal pathogenesis. Current analysis of histone modifying enzymes will be followed by ChIP-Seq and RNA-seq experiments to pinpoint the genes that are controlled by particular histone modifications. We anticipate that our work will provide not only the significant advances in our understanding of epigenetic mechanisms operating in microbial eukaryotes but also basis to expand our perspective on regulation of development in fungal pathogens.

  • PDF

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.

A Study on Blasting Vibration Control Criteria for Pre-insulated Pipe through the Numerical Analysis (수치해석을 이용한 이중보온관 발파진동 관리기준에 관한 연구)

  • Choi, Bong-Hyuck;Cho, Jin-Woo;Kim, Jin-Man;Yoo, Han-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1471-1478
    • /
    • 2013
  • In this paper, numerical analysis with varying distance and burial depth was performed to recommend the blasting vibration control standard for pre-insulated pipes. The blasting load model applied in the numerical analysis was verified to the comparison with the results of the field tests. It was determined from the results of the numerical analysis that the effective stress either exceeds or approaches the allowable stress of the inner steel pipe for vibration velocity greater than 4.0cm/sec while stability is obtained for vibration velocity below 4.0cm/sec. Therefore, it was determined that the blasting vibration control criteria for pre-insulated pipes must not exceed 4.0cm/sec.

Identification of Genetic Markers for Korean Native Cattle (Hanwoo) by RAPD Analysis

  • Yeo Jung Sou;Lee Ji Sun;Lee Chang Hee;Jung Young Ja;Nam Doo Hyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • In order to develop the specific genetic marker for Korean native cattle (Hanwoo), randomly amplified polymorphic DNA (RAPD) analysis of 6 different cattle breeds was attempted by using 38 decamer primers. In comparison of RAPD patterns, two distinctive DNA bands specific for Hanwoo were detected. One was 296 bp of DNA fragment found to be specific only for female Hanwoo when primer GTCCACACGG was employed. In individual analysis of this RAPD marker was observed only in female individuals with the possibility of $85.3\%$. The other was 521 bp of RAPD marker amplified using TCGGCGATAG and AGCCAGCGAA primers, which showed $83.0\%$ of genetic frequency in 85 male and 68 female individuals tested. Nucleotide sequencing of these genetic markers revealed that 296 bp marker has a short micro satellite-like sequence, ACCACCACAC, and a tandem repeat sequence of microsatellite GAAAAATG in the determined sequence. Two distinctive tandem repeats of microsatellite sequences, MC and GAAGA, were also appeared in 521 bp DNA marker. In BLAST search, any gene having high homology with these markers was not found.

  • PDF

A Numerical Study on Pressure Variation Characteristics in Blasthole by Air-Deck (에어데크 적용 시 발파공 내 압력변화 특성에 대한 수치해석)

  • Kang, Dae-Woo;Hur, Won-Ho
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • Air deck charge blasting method which has been generally used in a surface mine and large scale developing site is one of the improved techniques with blasting effectiveness. Many studies and experiments have been tried to investigate the characteristics of pressure distribution in a blasting hole and increase the effectiveness of air deck charge blasting method. In this study, changes of pressure occurred in sections of air deck installed in various ways was computed and also changes of pressure with the location and length of air deck was analyzed, using numerical analysis program. Basically, all the numerical analysis was 2-Dimensional analysis and equation of status of explosives was JWL-EOS. Only to evaluate the variations of pressure in blast hole, it was assumed that rock mass is homogeneous but rock mass has different density and intensity.

Cloning and characterization of a gene encoding ABP57, a soluble auxin-binding protein

  • Lee, Keunpyo;Kim, Myung-Il;Kwon, Yu-Jihn;Kim, Minkyun;Kim, Yong-Sam;Kim, Donghern
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • Auxin-binding protein 57 ($ABP_{57}$), a soluble auxin-binding protein, acts as a receptor to activate plasma membrane (PM) $H^+-ATPase$. Here, we report the cloning of abp57 and the biochemical characterization of its protein expressed in E. coli. The analysis of internal amino acid sequences of $ABP_{57}$ purified from rice shoots enabled us to search for the corresponding gene in protein DB of NCBI. Further BLAST analysis showed that rice has four abp57-like genes and maize has at least one homolog. Interestingly, Arabidopsis seems to have no homolog. Recombinant $ABP_{57}$ expressed in E. coli caused the activation of PM $H^+-ATPase$ regardless of the existence of IAA. Scatchard analysis showed that the recombinant protein has relatively low affinity to IAA as compared to natural $ABP_{57}$. These results collectively support the notion that the cloned gene is responsible for $ABP_{57}$.