• Title/Summary/Keyword: blanket fabric

Search Result 10, Processing Time 0.026 seconds

Dose Assessment According to Application of Carbon Fabric Blanket During Radiation Therapy of the Spine Metastasis Cancer (척추 전이암 환자의 방사선치료 시 Carbon Fabric Blanket 적용에 따른 선량평가)

  • Yang, Myung-Sic;Kim, Jung-Soo;Lee, Sun-Young;Kwon, Hyoung-Cheol
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.61-66
    • /
    • 2019
  • The purpose of this study was to improve the unstable treatment posture by placing the Carbon fabric blanket on the couch which was used for the patient fixation for the unstable posture from the severe pain caused by the neuromuscular pressure of the spinal metastatic cancer patient and to analyze the dose difference caused by the energy loss of high energy radiation. Using a linear accelerator, a FC-65G was installed at a depth of 5 cm at a solid phantom at 6 MV and 10 MV energies. The SAD was 100 cm, Gantry angle was $0^{\circ}$, a Cotton and Carbon blanket with a thickness of 1 cm on the couch, The blankets were placed on the couch and the dose was measured according to field size. For the dose measurement, and the dose was measured at 100 MU each time, and the mean value was calculated by repeating the measurement three times in order to reduce the error. The results showed that the difference rate in dose between Carbon blanket and Cotton blanket was respectively -0.54% and -0.75% based on the absence of the blanket(Non). Therefore, it is considered that the use of Carbon fabric blanket, which reduces the patient's pain and does not affect the depth dose, may be useful during radiation therapy of the spine metastasis cancer.

Studies on the Thermal Environment in Sleeping (II) -Thermal Insulation Effect of Bedding on Lightweight- (수면 열환경에 관한 연구 (II) -침구의 경량화에 따른 보온력-)

  • Sung, Su-Kwang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.3
    • /
    • pp.470-474
    • /
    • 1993
  • This study carried out to get some fundamental data for designing lightweight bedding. In This study, the wool blanket, polyester/cotton blended blanket and down quilt were manufactured with a varied materials, structural factors such as yam count, fabric density respectivelyarn. And also, the thermal insulation value of the bedding were measured by warmth retaining tester. In addition, this paper examines the influence of varying materials, structural factors and blanket layers on the thermal insulation effect of the bedding. The main results obtained from this study are as follow : 1. The design of lightweight blankets make an attempting with a varying materials and structural factors such as yam count, fabric densityarn. 2. Almost, the design of lightweight blankets for polyester/cotton blended blanket and down quilt make an attempting without reduction in thermal insulation values. 3. The 6 layers of blanket have less thermal insulation value than the 6 times of blanket for under a layer have. About 27~32% decrease is observed in thermal insulation value of blanket for under 6 layer. 4. The thermal insulation value and areal weight of blankets have a positive relation between the thermal insulation value(Y) and areal weight(X) is based on the following equation. wool blanket : Y = 1.0850X + 0.4188 (r = 0.9992) PIC blended blanket : Y = 0.8845X + 0.3034 (r = 0.9999)

  • PDF

The Effect of Number of Twists of Lyocell Yarns on Compression Property and Abrasion Resistance Blanket Fabrics (라이오셀방적사의 꼬임수에 따른 담요직물의 압축특성과 마모강도)

  • Song, Min-Kyu
    • Fashion & Textile Research Journal
    • /
    • v.8 no.3
    • /
    • pp.363-369
    • /
    • 2006
  • In this the study, Lyocell fabrics for blanket were developed to get high value added goods for elder and Infant. Therefore, the purpose of the study was determine the effect of twist per inch on the physical properties of developed fabrics, including compression property and abrasion resistance on the process for making Lyocell combined yarns. For comparison, commonly used cotton blanket was used. The results were as the follows: 1) Dimensional changes of Lyocell fabrics was in -3% which value was pretty stable, and antistatic property was very good with 10V of electric propensity voltage which means there was no static electricity at all. Pilling property of Lyocell fabrics showed 3 grade which was good and air permeability and moisture vapor transmission rate of Lyocell fabrics were higher than those of cotton fabric and keeping warmth rate of Lyocell fabrics was about 50% which means it very warms. 2) Twist per inch of Lyocell combined yarns increased with tensile strength and elongation of Lyocell fabrics. 3) Twist per inch of Lyocell combined yarns increased with decreasing thickness reduction rate and therefore, compression property of those was pretty good. Specially, compression property of Lyocell fabrics made with yarns of 3.9TPI was better than those of cotton fabric. 4) Twist per inch of Lyocell combined yarns increased with abrasion resistance of Lyocell fabrics.

Dyeing Properties of Blanket Fabric of Dyeable Polypropylene

  • Kim, Hyun-Jin;Lee, Jin-Ah;Chang, Young-Min;Park, Jong-Ho;Kim, Sung-Dong
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.36-43
    • /
    • 2007
  • Dyeing and fastness properties of a dyeable PP fiber were examined with four different types of disperse dyes. It was found that the dyed PP fiber could be cleared by soaping without using sodium hydrosulphite, and that the heat setting above $140^{\circ}C$ resulted in the melting of the PP fiber. The rates of dyeing and the extents of exhaustion of three primary E type dyes were different with each other, the apparent color strength did not increase with increasing dye concentration, and color fastness to washing was not satisfactory. In the cases of both high wash fastness and high light fastness dyes, the rates of dyeing were slow and the extents of exhaustion were very low. On the other hand, the dyeing rates of three primary S type dyes were similar and the build-up properties were good with good color fastnesses. It might be concluded that the best disperse dyes for the dyeable PP fiber were S type dyes.

Silica Aerogel Blanket Processing Technologies for Use as a Widespread Thermal Insulation Material (범용 단열재로 활용하기 위한 실리카 에어로젤 블랭킷의 처리 기술)

  • Jae-Wook Choi;Young Su Cho;Dong Jin Suh
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.237-243
    • /
    • 2023
  • Aerogel is the most excellent insulation material known to date, but it is inflexible and has very low strength. A blanket containing aerogel in a nonwoven fabric or fiber is currently the most practical form. However, aerogel blankets are not yet widely used because they cannot avoid dust generation when handled, lack flexibility, and can possibly deform. In this study, vacuum treatment, surface treatment, and composite materialization technology were applied to solve this problem, and some prototypes were also made. If an aerogel blanket is wrapped in an aluminum sheet, sealed at the four ends, and vacuumed, it can become a material with better insulation than the blanket itself. An aerogel molded body can be made by coating the aerogel blanket with resin and treating the surface. If the aerogel blanket is multi-packed and laminated with resin or fiber in multiple layers to make it a composite material, it can be used as a flexible insulation material. In particular, this composite material, which utilizes a Teflon membrane with controlled pores, is breathable and waterproof, so it can be used for clothing. Prototypes of insoles for winter boots and outdoor roll mats were also produced using aerogel blanket resin and fiber composites. These prototypes showed low thermal conductivity of less than 20 mW m-1K-1, with good flexibility and durability.

Characteristics of Bridal Palanquin Covers and Changes in Style from the late 19th Century to the early 20th Century (19세기 말~20세기 초 신부 가마덮개의 특성과 양식 변천)

  • PARK Yoonmee;OH Joonsuk
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.80-98
    • /
    • 2023
  • In the late Joseon Dynasty, when the bride would ride a palanquin when she went to live with her in-laws, it was a custom to cover the palanquin with tiger skin to ward off misfortunes that may come her way. The higher classes used tiger skin or leopard skin for this purpose, but the common people had to substitute this expensive item with a tiger pattern painted on a blanket. Such blankets were called hotanja, hogu, hoguyok and the like. The term "hotanja" is a pure Korean word. It is not known when the cover for the bridal palanquin was first used, but it was popular from the end of the 19th century and then gradually disappeared. This is due to the introduction of new Western style weddings that eliminated the need for a bridal palanquin. The tiger print blanket was used not only to cover the bride's palanquin but also to cover a table or floor during the wedding ceremony. This study ran a material analysis on nine pieces of tiger print blankets. All of the blanket artifacts examined in this study had an outer cover and a lining made of fabric that used cotton thread for the warp and wool thread for the weft. Two kinds of wool were found in the weft thread in the outer covers: fat-tailed sheep hair from China and goat hair for carpets from the Hebei province, China. Records show that "blankets with painted tiger patterns" were imported from Russia, and the imported blankets were from Russia and China. The outer cover can be categorized into six types, and the lining into three types depending on the weave and direction of the thread twist. The hem facing can be divided into four types. The lining and outer cover use the full width of the fabric, which was woven in wide widths of 135 cm or wider. The tiger pattern on the blanket was made by stenciling. The stencil design of the body and tail of the tiger were placed on a red blanket to be painted in white, and then the background color of the tiger, which is yellow, would be painted over the white, and then black stripes would be added. The pattern of the tiger varies, which shows that the blankets were made by various craftspeople. The pattern of the tiger print blanket is usually of a tiger lying down, but there were tiger print blankets with a tiger standing up. The pattern of the tiger grew smaller over time, and flower patterns were added in the background. Decorative elements were gradually added to the tiger print blanket patterns, but its function as a palanquin cover became lost. By taking the features of tiger print blankets into consideration, it can be assumed that there are imported pieces among the remaining pieces, and were produced in various places because it was popular at that time.

Effect of Double Layer Nonwoven Fabrics on the Growth, Quality and Yield of Oriental Melon(Cucumis melo L. var. makuwa Mak.) under Vinyl House (보온부직포 이중피복이 참외의 생육, 품질 및 수량에 미치는 영향)

  • Shin Yong Seub;Park So Deuk;Do Han Woo;Bae Su Gon;Kim Jwoo Hwan;Kim Byung Soo
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2005
  • The use of blankets to preserve heat in oriental melon cultivation is a common practise without artificial heating and warming systems. Efficiency of blanket decreased with annually usage. This experiment was conducted to investigate the effect of double layer nonwoven fabrics on heat conservation, plant growth, fruit quality and yield of oriental melon in greenhouse. The results were compared among the non-woven fabrics of 9+3, 6+6, 6+3 and 12 ounce from transplanting to April 20, 2001, 2002. Night temperature within tunnel was high at 9+3, 6+6, 6+3 and 12 ounce in order. In plant growth, stem length, leaf numbers and exudate, under double layer nonwoven fabrics were better than single layer blanket of 12 ounce especially, 9+3 double layer blanket was the best. Fruit weight, flesh thickness, soluble solid and marketable yield rate remained same in all treatments. Fermented fruit rate was the highest in 12 ounce as $32.9\%,\;19.6\%\;under\;9+3,\;17.1\%\;under\;6+6,\;16.6\%$ under 6+3 double layer nonwoven fabric, respectively. Compared to 2,260kg yield per 10a of 12 ounce single layer nonwoven fabrics, $7\%$ was increased under 9+3 but $3\%\;and\;13\%$ were decreased under 6+6 and 6+3 double layer nonwoven fabrics, respectively. Compared to income, 4,499-thousand-won per 10a, of 12 ounce single layer blanket, $13\%\;and\;3$ were increased under 9+3 and 6+6 double layer nonwoven fabrics, respectively. Whereas, $10\%$ decreased under 6+3 double layer nonwoven fabrics. From this results it is evident that 9+3 double layer nonwoven fabrics was the best for thermokeeping, fruit quality, and was most economic under non heating system.

Name Review, and Production Method of Pyeongjeongmo, Housed by the National Palace Museum of Korea (국립고궁박물관 소장 평정모(平頂帽)의 명칭 검토와 제작방법)

  • Lee, Eun-Joo;Jin, Duk-Soon;Lee, Jeong-Min
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.4-21
    • /
    • 2018
  • This paper reviewed the legitimacy of the name of those sixteen pieces of hat artifacts known in Korean as pyeongjeongmo and currently housed by the National Palace Museum. This was undertaken in order to rectify the error of calling them pyeongjeongmo. Also, the paper suggested pyeongjeongmo's production method to apply representation of the artifacts or production of Joseon officials' hats as representation of ritual costumes in the royal court. The name pyeongjeongmo originated from pyeongjeonggeon. Gyeongguk Daejeon recorded that noksas wore yugak-pyeongjeonggeon and seoris wore mugak-pyeongjeonggeon, but the pyeongjeongmo artifacts housed in the National Palace Museum have been found irrelevant to those pyeongjeonggeons put on by both noksas and seoris. Rather, they has been confirmed as corresponding to dugeon or jogeon worn by byeolgams or suboks who served at the palace of the crown prince or princess. Through the investigation of the artifacts, the researchers could find out the tailoring and sewing methods, the finished look, and the folding manner of pyeongjeonggeon. Although the structure of pyeongjeonggeon was generally consistent, the frontal look was slightly different depending on the folding manner, resulting in three distinguished types of pyeongjeonggeon. Regardless, the pyeongjeongmo was made with one piece of fabric by a flat tailoring and folding method to create a three-dimensional hat. The finished shape appeared low in the front and high in the back side structure. The head girth was 55~59 cm, and the height was 19.4~21.5 cm. To make it with one piece of fabric, the head girth part was tailored in the same direction as the strands. Based on the artifact Changdeok 23820, this paper has also suggested a finished reproduction through the processes of preparing the materials, mounting, making the center ornaments, sewing and folding. The tailoring was completed with black silk fabric which was cut in a unique shape designed in advance, and hemp fabric which was mounted to the former. The top part of the head was finished with black threads, and the center line at the back was fixed with decolored cotton threads by blanket stitches with 3.5~4 cm intervals. Bamboo strands were inserted in the inside of the front-folded part, which then was fixed by patterned stitches with white cotton thread. At the back, a small bamboo clasp was attached so that one can lock it to the headband and prevent it from falling off.

In Tomotherapy, for the Maintenance of Body Temperature due to Substance Use, Changes in Dose Assessment in the Organization (TOMO 치료 시 체온 유지를 위한 물질 사용에 따른 조직 내 선량 변화 평가)

  • Hwang, Jae-Woong;Jeong, Do-Hyeong;Kim, Dae-Woong;Yang, Jin-Ho;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.2
    • /
    • pp.131-134
    • /
    • 2010
  • Purpose: TOMO therapy treatment for a relatively long run Beam time and temperature-sensitive detector, such as CT clinics in optimal temperature ($20~21^{\circ}$) to maintain a constant temperature in addition to its own Chamber Cooling system is activating. TOMO This clinic has been reduced in the patients' body temperature to keep the sheets and covers over the treated area. Therefore, these materials for any changes in the organization gives the dose were analyzed. Materials and Methods: To compare changes in the organization Dose Phantom cheese (Cheese Phantom) were used, CT-simulation taking the center point of the cheese phantom PTV (Planning Target Volume, treatment planning target volume) by setting Daily dose 200 cGy, 3 meetings planned treatment. PTV, PTV +7 cm, PTV +14 cm, the total count points on the phantom using the Ion chamber cover without any substance to measure the dose, and one of the most commonly used treatment, including the frequently used four kinds of bedding materials (febric 0.8 mm, gown 1.4 mm, rug, 3.3 mm, blanket 13.7 mm) and covered with a phantom and the dose measured at the same location were analyzed 3 times each. Results: PTV, PTV +7 cm, PTV +14 cm from the point of any substance measured in the state are covered with four kinds of materials (fabric, gown, rug, blanket) was measured in the covered states and compares their results, PTV respectively -0.17%, -0.44%, -0.53% and -0.9% change, PTV +7 cm, respectively -0.04%, +0.07%, +0.06%, +0.07%, were changed, PTV +14 cm, respectively 0%, -0.06%, -0.02%, +0.6%, respectively. Conclusion: These results TOMO treatment to patients to maintain their body mass by using PTV thickness of the material decreased in proportion to. PTV +7 cm, but showed slight changes in the point, PTV +14 cm at the point of the dose was increased a little. Sejijeom all the difference in treatment tolerance ${\pm}3%$ range, this is confirmed in the coming treatment will not affect the larger should be considered.

  • PDF

Progress of Composite Fabrication Technologies with the Use of Machinery

  • Choi, Byung-Keun;Kim, Yun-Hae;Ha, Jin-Cheol;Lee, Jin-Woo;Park, Jun-Mu;Park, Soo-Jeong;Moon, Kyung-Man;Chung, Won-Jee;Kim, Man-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • A Macroscopic combination of two or more distinct materials is commonly referred to as a "Composite Material", having been designed mechanically and chemically superior in function and characteristic than its individual constituent materials. Composite materials are used not only for aerospace and military, but also heavily used in boat/ship building and general composite industries which we are seeing increasingly more. Regardless of the various applications for composite materials, the industry is still limited and requires better fabrication technology and methodology in order to expand and grow. An example of this is that the majority of fabrication facilities nearby still use an antiquated wet lay-up process where fabrication still requires manual hand labor in a 3D environment impeding productivity of composite product design advancement. As an expert in the advanced composites field, I have developed fabrication skills with the use of machinery based on my past composite experience. In autumn 2011, the Korea government confirmed to fund my project. It is the development of a composite sanding machine. I began development of this semi-robotic prototype beginning in 2009. It has possibilities of replacing or augmenting the exhaustive and difficult jobs performed by human hands, such as sanding, grinding, blasting, and polishing in most often, very awkward conditions, and is also will boost productivity, improve surface quality, cut abrasive costs, eliminate vibration injuries, and protect workers from exposure to dust and airborne contamination. Ease of control and operation of the equipment in or outside of the sanding room is a key benefit to end-users. It will prove to be much more economical than normal robotics and minimize errors that commonly occur in factories. The key components and their technologies are a 360 degree rotational shoulder and a wrist that is controlled under PLC controller and joystick manual mode. Development on both of the key modules is complete and are now operational. The Korean government fund boosted my development and I expect to complete full scale development no later than 3rd quarter 2012. Even with the advantages of composite materials, there is still the need to repair or to maintain composite products with a higher level of technology. I have learned many composite repair skills on composite airframe since many composite fabrication skills including repair, requires training for non aerospace applications. The wind energy market is now requiring much larger blades in order to generate more electrical energy for wind farms. One single blade is commonly 50 meters or longer now. When a wind blade becomes damaged from external forces, on-site repair is required on the columns even under strong wind and freezing temperature conditions. In order to correctly obtain polymerization, the repair must be performed on the damaged area within a very limited time. The use of pre-impregnated glass fabric and heating silicone pad and a hot bonder acting precise heating control are surely required.