• 제목/요약/키워드: blank

검색결과 1,098건 처리시간 0.021초

유한요소법을 이용한 역추적기법 개발 및 판재성형의 초기블랭크 형상설계에 적용 (Development of the Backward Tracing Scheme of FEM and Its Application to Initial Blank Design in Sheet Metal Forming)

  • 최한호;강경주;구태완;임학진;황상문;강범수
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.348-355
    • /
    • 2000
  • The backward tracing scheme(BWT) of the finite element method has been extended lot the design of sheet blank in three-dimensional deformation. Originally the scheme was developed for preform design in bulk forming, and applied to several forming processes successfully. Its key concept is to trace backward from the final desirable configuration to an intermediate preform or initial blocker. A program for initial blank design in sheet forming which contains the capabilities of forward loading simulation by the finite element method and backward tracing simulation, has been developed and proved the effectiveness by applying to a square cup stamping process. In the blank design of square cup stamping, the backward tracing program can produce an optimum blank configuration which forms a sound net-shape cup product without machining after forming. For the confirmation of the analytic result derived from the backward tracing simulations as well as forward loading simulations, a series of experiment were carried out. The experiments include the first trial sheet forming process with a rectangular blank, an improved process with a modified blank preform and the final process with an optimum blank resulted from the backward tracing scheme. The experiments show that the backward tracing scheme has been implemented successfully in blank design of sheet metal forming.

  • PDF

고속 성형 공정의 바운싱 현상을 줄이기 위한 액중 방전 성형의 해석적 연구 (Numerical Study of Electrohydraulic Forming to Reduce the Bouncing in High Speed Forming Process)

  • 우민아;노학곤;송우진;강범수;김정
    • 소성∙가공
    • /
    • 제25권4호
    • /
    • pp.261-267
    • /
    • 2016
  • High-speed forming process is the forming technology that deforms the blank in a very short time, with the strain rate of the blank above 1000 s−1. Among many high-speed forming processes, electromagnetic forming (EMF) employs the Lorentz force when deforms the blank. Because of the high strain rate, the formability of the blank can be improved. However, when the blank is formed into rather complex shapes, it is bounced from the die and the wrinkles are generated. Therefore, electrohydraulic forming (EHF) is suggested in this study to reduce the bouncing problem of the blank. EHF is a high-speed forming that uses high voltage discharge in liquid. The shockwave resulting from the electric discharge propagates to the blank and it deforms the blank into the die. In this study, two high-speed forming processes, EMF and EHF were compared numerically with trapezoidal middle block die. This comparison showed that EMF cannot deform the blank into the die because of the bouncing, while EHF can overcome the bouncing problem and deform the blank into the die shape successfully.

대면적 후곡판 성형을 위한 블랭크 지지구조 설계 (Design of Blank Support Structure for Large and Curved Thick Plate Forming)

  • 곽봉석;윤만중;전재영;강범수;구태완
    • 소성∙가공
    • /
    • 제27권1호
    • /
    • pp.18-27
    • /
    • 2018
  • As one of the functional metal parts in steam turbine diaphragm assembly, the hollow-partitioned turbine nozzle (stator) has large and thick geometries, as well as an asymmetric configuration. Therefore it is hard to support a metal blank in the die cavity. To ease this situation and control posture and position of metal blank (workpiece), a blank support structure is newly introduced. The blank support structure is basically composed of enlarged arms from the blank, guide pins and linear bearings. It can help to control the intermediate blank without a critical sliding phenomenon. The operation mechanism of this blank support structure, during thick plate forming for the hollow-partitioned turbine nozzle stator, is first evaluated. A series of FEM-based numerical simulations, with respect to the width of the guide arm as geometric design parameters, are carried out to investigate its applicable range. As the results, it is observed the blank support structure for this thick plate forming can guide the workpiece to have stable posture during the plate forming process.

민감도를 이용한 최적블랭크 설계법의 CAD 형식으로 표현된 금형에의 적용 (An Application of Optimal Blank Design by Sensitivity Analysis to Stampings of General Shaped parts)

  • 손기찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 추계학술대회논문집
    • /
    • pp.45-48
    • /
    • 1999
  • The optimal blank design method by sensitivity analysis has been applied to the formings of oil-pan, tailored blank and front panel have been chosen as the examples. Die shape is prepared by a commercial CAD system. Excellent results has been obtained between the numerical results and the target contour shapes. Through the investigation, the proposed systematic method of optimal blank design is found to be effective in the practical forming processes.

  • PDF

민감도법을 이용한 최적블랭크 설계법의 일반적인 모양의 금형에의 적용 (An Application of Optimal Blank Design by the Sensitivity Analysis to the Stampings of General Shaped Parts)

  • 심현보;손기찬;황현태
    • 소성∙가공
    • /
    • 제9권3호
    • /
    • pp.226-232
    • /
    • 2000
  • The optimal blank design method by sensitivity analysis has been applied to the formings of oil-pan, tailored blank and front panel as the examples. Die geometry is prepared by a commercial CAD system. Excellent results has been obtained between the numerical results and the target contour shapes. Through the investigation, the proposed systematic method of optimal blank design is found to be effective in the practical forming processes.

  • PDF

박판성형공정의 블랭크 최적설계 (Optimal Blank Design for Sheet Metal Stamping)

  • 김용환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.141-145
    • /
    • 2000
  • A systematic method to find the optimal blank shape for sheet forming is proposed by coupling the numerical simulation technique. A weighted parameter was introduced in order to simplify the multi-variable optimization problem to a single-variable problem. The proposed method has been applied to the blank design of drawing processes to obtain the near-net shape within the required error bound after forming, Excellent results have been obtained between the numerical results and the target contour shapes. Through the investigation the proposed systematic method for optimal blank design is found to be effective in the practical forming processes

  • PDF

박판성형의 초기소재 설계시스템 (Blank Design System for Sheet Forming)

  • 김두현;이정민;박상후;양동열;김용환
    • 소성∙가공
    • /
    • 제6권5호
    • /
    • pp.400-407
    • /
    • 1997
  • Geometric mapping technique has been used to find the shape of initial blank for sheet forming. The method was chosen because of its simplicity and numerical efficiency. Error in blank shape were measured along deformation path by FE analysis of forming. Blank shape was modified by volume additionaddition/Subtractiontraction method with taking with taking into account of deformation path. Modified blank shape shows an acceptable result, showing the current method can be an useful tool for predicting blank shape in the practical application. More test will be done to verify the validity of the method.

  • PDF

다구찌법을 이용한 테일러드 블랭크의 신장플랜지 성형에 미치는 설계 인자의 영향 분석 (Effects of Blank Design factors on Stretch Flange Forming of the Tailored Blank Using Taguchi Method)

  • 백승엽;권재욱;이경돈
    • 소성∙가공
    • /
    • 제9권4호
    • /
    • pp.339-347
    • /
    • 2000
  • For the successful forming of tailored blank, it is important to control the deformation of the stretch flange mode, which is strong1y dependent upon the location of weld line and blank shape. In order to investigate the effects of tailored blank design factors on the stretch flange forming, we made the model die which can simulate stretch flange mode. Taguchi method was employed to analyze the sensitivity of blank design factors for the forming of tailored blank. From the results of experiment S/N ratios were calculated and using Variance Analysis, significance of parameters and optimal condition of each factors were extracted. Based on these analyses, the weld line height and the strength ratio and the arc center height were selected as effective parameter. The analysed result was practically applied for Side outer panel stamping process.

  • PDF

충돌안전성에 미치는 블랭크형상의 영향 (Effect of Blank Shapes on the Impact Safety of Stamped Parts)

  • 심현보;박종규
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.210-217
    • /
    • 2008
  • The effects of blank shape on the safety of stamped parts are studied through the comparison of an optimal blank and the corresponding reference blank shape to show further advantage of the optimal blank. In order to carry out this study, stamping process has been analyzed and the forming history, e.g. accumulated effective strain and thickness has been incorporated in the crash analysis. The reference blank has been determined following to the actual industry guideline, and excessive material to the desired shape has been trimmed off before crash analysis for the objective comparison. Through the study, appreciable increase of impact safety has not been observed and the effective of blank shape is verified not to be significant.

타원형 디프 드로잉 공정에서 블랭크 형상 최적화에 관한 실험적 연구 (An Experimental Study on Optimization of Blank Shape in Elliptical Deep Drawing Process)

  • 박동환;최병근;박상봉;강성수
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.101-108
    • /
    • 1999
  • Most of researches for deep drawing process have been performed on the formability of axisymmetric blank, but there is an insufficient study on the formability of non-axisymmetric blank. In addition, the conventional blank shape has been determined by the trial-and-error method using industrial experience and post processing test. Therefore only approximated shape of the blank can be presented. In this study, the optimal blank shape and concrete drafting method in deep drawing process with biaxisymmetric elliptical shape is proposed. Through the deep drawing experiment, it is found that the optimal blank shape gives the most uniform thickness of the products in the first process

  • PDF