• Title/Summary/Keyword: blade pivot point

Search Result 2, Processing Time 0.018 seconds

Aerodynamic performance enhancement of cycloidal rotor according to blade pivot point movement and preset angle adjustment

  • Hwang, In-Seong;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.58-63
    • /
    • 2008
  • This paper describes aerodynamic performance enhancement of cycloidal rotor according to the blade pivot point movement and the blade preset angle adjustment. Cycloidal blade system which consists of several blades rotating about an axis in parallel direction and changing its pitch angle periodically, is a propulsion mechanism of a new concept vertical take off and landing aircraft, cyclocopter. Based on the designed geometry of cyclocopter, numerical analysis was carried out by a general purpose commercial CFD program, STAR-CD. According to tills analysis, the efficiency of cycloidal rotor could be improved more than 15% by the introduced methods.

A note on "An Experimental Study on the Propulsive Characteristics of Sculls" ("선미 노의 추력발생기구 규명을 위 실험적 연구"에 관한 노트)

  • 사쿠라이다케오
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.88-92
    • /
    • 2001
  • H. Kim, B.K. Lee and C.K. Rheem have been experimentally studied to clarified the mechanism of thrust force generated by sculling motion for the propulsion of Korean small boats. The experimental investigations have been conducted under the bollard condition by installing a scull at the end of a trimming tank of towing tank. The sculling motion produced by the skilful fisherman and the resultant venerated forces have been measured in respect to the Cartesian coordinate fitted to the pivot point of the scull. ("An Experimental Study on the Propulsive Characteristics of Sculls". J. of the Soc. of Naval Arch. of Korea, Vol. 26, No. 3, 1989, pp.13-24) Through these experiments the trajectory of the blade tip and the angular displacement of the blade section have been measured as shown in Fig. 1 and 2 of this paper. And at the same time the resultant hydrodynamic force components are expressed in Fig. 3 and 4. These three dimensional data of sculling motion and generated real time force components are the unique experimental information which could clarify the thrust force generating mechanism of sculling motion. The experimental results have been reanalyzed by focusing the relation between instantaneous attack angle of blade section and the resultants real time force components. Through these investigation it is found out that the conventional imagination that the 7cull motion should be effective in generating lift force must be reconsidered because the attack angle of scull blade are too great to free from stall phenomena during the sculling operation.

  • PDF