• 제목/요약/키워드: blade model

검색결과 786건 처리시간 0.024초

다양한 막냉각 홀 형상에 대한 막냉각 효율의 수치해석 (NUMERICAL STUDY ON FILM-COOLING EFFECTIVENESS FOR VARIOUS FILM-COOLING HOLE SCHEMES)

  • 김선민;이기돈;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.104-111
    • /
    • 2011
  • To protect the turbine blade, many cooling techniques has developed. With all other things, film-cooling has been widely used as the important alternative. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as cylindrical, crescent, louver, and dumbbell holes. To analyze the turbulent flow and the film-cooling mechanism, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been assessed in comparison with experimental data. The characteristics of fluid flow and the film-cooling performance for each shaped hole have been investigated and evaluated in terms of centerline, laterally averaged and spatially averaged film-cooling effectivenesses. The dumbbell shaped hole shows better film-cooling effectiveness than other shaped holes. And the louver and cylindrical shaped hole shows lower one, and concentrated flow on centerline only.

  • PDF

열회수를 고려한 소형 증기분사 가스터빈 시스템 해석 (Analysis of a small steam injected gas turbine system with heat recovery)

  • 김동섭;조문기;고상근;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권8호
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.

익단간극이 원심압축기 성능에 미치는 영향에 관한 수치해석적 연구 (Numerical Study on Tip Clearance Effect on Performance of a Centrifugal Compressor)

  • 음학진;강신형
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.389-397
    • /
    • 2003
  • Effect of tip leakage flow on through flow and performance of a centrifugal compressor impeller was numerically studied using CFX-TASC flow. Seven different tip clearances were used to consider the influence of tip clearance on performance. Secondary flow and loss factor were evaluated to understand the loss mechanism inside the impeller due to tip leakage flow. The calculated results were circumferentially averaged along the passage and at the impeller exit for quantitative discussion. Tip clearance effect on Performance could be decomposed into inviscid and viscous components using one dimensional equation. The inviscid component is related with the specific work reduction and the viscous component is related with the additional entropy generation. Two components affected Performance equally. while efficiency drop was mainly influenced by viscous loss. Performance and efficiency drop due to tip clearance were proportional to the ratio of tip clearance to exit blade height. A simple model suggested in the present study predict performance and efficiency drop quite successfully.

유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석 (Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method)

  • 이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

대형 와 모사를 통한 레이놀즈 수 증가에 따른 혼합 탱크 내의 유동 구조의 연구 (The study of Flow Structure in a Mixing Tank for Different Reynolds Numbers Using LES)

  • 윤현식;전호환;하만영
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1290-1298
    • /
    • 2003
  • The stirred tank reactor is one of the most commonly used devices in industry for achieving mixing and reaction. Here we report on results obtained from the large eddy simulations of flow inside the tank performed using a spectral multi-domain technique. The computations were driven by specifying the impeller-induced flow at the blade tip radius. Stereoscopic PlY measurements (Hill et al. $^{(1)}$) along with the theoretical model of the impeller-induced flow (Yoon et al. $^{(2)}$) were used in defining the impeller-induced flow as superposition of circumferential, jet and tip vortex pair components. Large eddy simulation of flow in a stirred tank was carried out for the three different Reynolds numbers of 4000, 16000 and 64000. The effect of different Reynolds numbers is well observed in both instantaneous and time averaged flow fields. The instantaneous and mean vortex structures are identified by plotting an isosurfaces of swirling strength for all Reynolds numbers. The Reynolds number dependency of the non-dimensional eddy viscosity, resolved scale and subgrid scale dissipations is clearly shown in this study.

회전익 끝와류의 초기 난류 구조에 관한 실험적 연구 (An Experimental Study on the Turbulence Structure of Tip Vortices Generated by a Rotor Blade at the Initial Wake Age)

  • 김영수;한용운
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.661-669
    • /
    • 1999
  • The evolutionary structure of a tip vortex in the initial period have been investigated by the two-dimensional LDV system. Circumferential and axial components of mean velocities, their turbulences and Reynolds stresses were measured by the phase averaging technique at seven different wake ages within one revolution of the rotor. Core growth was also analyzed. It was resulted that circumferential velocity components showed a Rankine combined vortex shape and their circulation profiles viewed in the radial direction were close to the n = 2 model of Vatistas' algebraic formula, while axial velocity components seemed to have the Gaussian profiles In these measured ranges with the base width of three times of core radii. Peaks of circumferential velocities and core radii showed distinct asymmetric behaviors before the wake age of $150^{\circ}$ over inboard and outboard sides of the slipstream, but they became symmetric afterwards. Turbulence profiles which had two peaks Inside the core radii in the earlier wake age were also changed to single peaks after $150^{\circ}$. These trends imply that the tip vortex was barely mature at this wake age.

연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계 (Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU)

  • 김의열;이영준;이상권
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.

LES에 의한 PAC용 시로코홴의 3차원 전산유동해석 (Three-Dimensional Computational Flow Analysis of a Sirocco Fan for a Package Air Conditioner by LES)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.51-59
    • /
    • 2012
  • The computational flow analysis using LES technique was carried out to investigate the flow characteristics of a sirocco fan under the maximum flowrate condition. The commercial SC/Tetra software was used for this unsteady and three-dimensional numerical analysis. In consequence, because a flow is unstable within the range of about 50% of a housing depth from a bellmouth around the cutoff region, the passing flow through the blade cascade occurred on the X-Y plane is a slow or a reverse with approaching to the housing inlet. Also, the secondary flow shows on the radial plane of a housing, and its vortex center exists within about 33% of a housing depth from a bellmouth except the cutoff region. Moreover, the flow occurring on the exit plane of a sirocco fan shows a complex secondary flow.

GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법 (Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010)

  • 정대하;김동현;김명환
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.

축류팬의 유동소음 정확도 향상을 위한 수치해석에 관한 연구 (A study on the numerical method to predict the accurate aeroacoustic noise on axial fan)

  • 전완호;임태균;미노리가와 가쿠
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.311-318
    • /
    • 2013
  • The paper describes the prediction method for the unsteady flow field and the aeroacoustic noise of an small axial fan. The prediction method is comprised of various CFD conditions and acoustic analogy by using Ffowcs Williams-Hawkings equation. The diameter of tested axial fan is 170 mm and number of blade is 5. Virtual anechoic room which has same size with real one was used for CFD. URANS and LES models were used. For mesh dependence study, a different mesh type was tested and optimized mesh was selected. Calculation conditions were also studied such as time step and turbulence model for accurate noise analysis. In this paper, we got optimum analysis conditions and computational results. The unsteady pressure fluctuation at given 4 points were compared between the measured data and computational results. Also, the predicted acoustic spectrum at 3 given microphone points were compared with measured ones.

  • PDF