• Title/Summary/Keyword: blade model

Search Result 786, Processing Time 0.025 seconds

Modeling of Non-Equilibrium Kinetics of Fuel Rich Combustion in Gas Generator (농후 연소 가스발생기의 비평형 연소 화학반응 모델링)

  • 유정민;이창진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.89-96
    • /
    • 2006
  • The combustion temperature in gas generator should be kept below around 1,000K to avoid any possible thermal damages to turbine blade by adopting either fuel rich or oxidizer rich combustion. Thus, non-equilibrium chemical reaction dominates in the gas generator. Meanwhile, Kerosene is a compounded fuel mixed with various types of hydrocarbon elements and difficult to model the chemical kinetics. This study focus to model the non-equilibrium chemical reaction of kerosene/LOX with detailed kinetics developed by Dagaut using PSR(Perfectly stirred reactor) assumption. Also, droplet evaporation time is taken into account by calculating for the residence time of droplet and by decoupling reaction temperature from the reactor temperature. In Dagaut’s surrogate model for kerosene, chemical kinetics of kerosene consists of 1592 reaction steps with 207 chemical species. The comparison of calculation results with experimental data could provide very reliable and accurate numbers in the prediction of combustion gas temperature, species fraction and other gas properties.

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Parametric Designs of a Pre-swirl Duct for the 180,000DWT Bulk Carrier Using CFD (CFD를 이용한 180,000 DWT Bulk Carrier용 Pre-Swirl Duct의 파라메트릭 설계)

  • Cho, Han-Na;Choi, Jung-Eun;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.343-352
    • /
    • 2016
  • In this study, a pre-swirl duct for the 180,000 DWT bulk carrier has been designed from a propulsion standpoint using CFD. The stern duct - designed by NMRI - was selected as the initial duct. The objective function is to minimize the value of delivered power in model scale. Design variables of the duct include duct angle, diameter, chord length, and vertical and horizontal displacements from the center. Design variables of the stators are blade number, arrangement angle, chord length, and pitch angle. A parametric design was carried out with the objective function obtained using CFD. Reynolds averaged Navier-Stokes equations have been solved; and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. MRF and sliding mesh models have been applied to simulate the actuating propeller. A self-propulsion point has been obtained from the results of towing and self-propelled computations, i.e., form factor obtained from towing computation and towing forces obtained from self-propelled computations of two propeller rotating speeds. The reduction rate of the delivered power of the improved stern duct is 2.9%, whereas that of the initial stern duct is 1.3%. The pre-swirl duct with one inner stator in upper starboard and three outer stators in portside has been designed. The delivered power due to the designed pre-swirl duct is reduced by 5.8%.

A Vibration Problem and Countermeasures for the Deck House and Stern of a Ro/Ro Ship (차량운반선의 거주구와 선미의 연성진동문제 및 방진대책)

  • Man-Cheol Han;Sang-Heon Oh;Il-Cook Baik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.135-144
    • /
    • 1994
  • The coupled vibration of the deck house and stern structure, which was experienced on a 12,900 TDW Ro/Ro ship, has been studied. It was a large-scale vibration problem where the structure resonates with the propeller excitation at the first blade passing frequency. After discussing the structural characteristics of the ship, the vibration characteristics measured ducting the sea-trial are presented and compared with the analysis results which are based on a 3 dimensional finite element(FE) model. The FE model is also used to verify various reinforcement options and to predict their effectiveness. A substantial reduction or the vibration was confirmed during the sea-trial after installing a few selected reinforcement. The forced vibration response, which is computed using the FE model, is compared with the measured data. The change of the vibration characteristics according to loading conditions is also studied.

  • PDF

Experimental Study on Ventilation and Shaft Excitation Force of a Propeller in Partially Submerged Condition (부분 침수 조건에서 작동하는 프로펠러의 공기유입과 축계 기진력에 대한 실험적 연구)

  • Ha, Jeongsoo;Seo, Jeonghwa;Park, Gyukpo;Park, Jongyeol;Rhee, Shin Hyung;Yoo, Jaehoon;Park, Suyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.40-48
    • /
    • 2021
  • Through a series of bollard pull tests of a propeller in partially submerged condition, thrust, torque, and shaft excitation force of a conventional propeller model were measured using a six-component load cell. By variation of the Weber number and Reynolds number, a consistent towing tank model test condition was derived. The effects of propeller immersion depth on the ventilation behavior and change of force and moment acting onto the propeller shaft were investigated. The decrease in thrust owing to the inception of ventilation was confirmed, and a large degree of dispersion of the thrust and torque coefficients were also observed in the transition region where the blade tip was under the water surface. The shaft excitation force was derived from the force and moment onto the propeller shaft.

Design and Prediction of Three Dimensional Flows in a Low Speed Highly Loaded Axial Flow Fan

  • Liu, Xuejiao;Chen, Liu;Dai, Ren;Yang, Ailing
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.94-104
    • /
    • 2013
  • This paper describes the design to increase the blade loading factor of a low speed axial flow fan from normal 0.42 to highly loaded 0.55. A three-dimensional viscous solver is used to model the flows in the highly-loaded and normal loaded stages over its operation range. At the design point operation the static pressure rise can be increased by 20 percent with a deficit of efficiency by 0.3 percent. In the highly loaded fan stage, the rotor hub flow stalls, and separation vortex extends over the rotor hub region. The backflow, which occurs along the stator hub-suction surface, changes the exit flow from the prescribed axial direction. Results in this paper confirm that the limitation of the two dimensional diffusion does not affect primarily on the fan's performance. Highly loaded fan may have actually better performance than its two dimensional design. Three dimensional designing approaches may lead to better highly loaded fan with controlled rotor hub stall.

Internal Flow of a Two-Bladed Helical Inducer at an Extremely Low Flow Rate

  • Watanabe, Satoshi;Inoue, Naoki;Ishizaka, Koichi;Furukawa, Akinori;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • The attachment of inducer upstream of main impeller is an effective method to improve the suction performance of turbopump. However, various types of cavitation instabilities are known to occur even at the designed flow rate as well as in the partial flow rate region. The cavitation surge occurring at partial flow rates is known to be strongly associated with the inlet back flow. In the present study, in order to understand the detailed structure of internal flow of inducer, we firstly carried out the experimental and numerical studies of non-cavitating flow, focusing on the flow field near the inlet throat section and inside the blade passage of a two bladed inducer at a partial flow rate. The steady flow simulation with cavitation model was also made to investigate the difference of flow field between in the cavitating and no-cavitating conditions.

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

An Analysis of the Flow and Sound Field of a Ducted Axial Fan (덕트가 있는 축류홴의 유동 및 음향장 해석)

  • Jeon, Wan Ho;Chung, Ki Hoon;Lee, Duck Joo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.15-23
    • /
    • 2000
  • The present work describes the prediction method for the unsteady flow field and the acoustic pressure field of a ducted axial fan. The prediction method is comprised of time-marching free-wake method, acoustic analogy, and the Kirchhoff-Helmholtz BEM. The predicted sound signal of a rotor is similar to the experiment one. We assume that the rotor rotates with a constant angular velocity and the flow field around the rotor is incompressible and inviscid. Then, a time-marching free-wake method is used to model the fan and to calculate the flow field. The force of each element on the blade is calculated by the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The newly developed Helmholtz-Kirchhoff BEM lot thin body is used to calculate tile sound field of the ducted fan. The ducted fan with 6 blades is analysed and the sound field around the duct is calculated.

  • PDF

RANS ANALYSES OF THE TIP VORTEX FLOW OF A MARINE PROPELLER (RANS법을 이용한 선박 프로펠러 날개 끝 보오텍스 유동 해석)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.62-69
    • /
    • 2016
  • It has been highly demanded to improve the accuracy of CFD(Computational Fluid Dynamics) methods for the assessment of the hydrodynamic performance of marine propellers in cavitating and non-cavitating flows. This paper presents a validation study on the numerical simulation of the tip vortex flow of a non-cavitating marine propeller SVA VP1304. The calculations are carried out by using the Reynolds averaged Navier-Stokes(RANS) approach, where the Reynolds Stress Model(RSM) is used for turbulence closure. The present paper contains a grid dependence test for the propeller open water simulations and a special emphasis is placed on conducting a local grid adaptation on the blade tip and in the tip vortex to reasonably reproduce the velocity and the pressure in the tip vortex flow field. The numerical results are compared with the experimental validation data, which are published in the second International Symposium on Marine Propulsors 2011(SMP'11). The present numerical results show a reasonable agreement with the experiments.