• Title/Summary/Keyword: black-box test

Search Result 62, Processing Time 0.02 seconds

An Iterative Data-Flow Optimal Scheduling Algorithm based on Genetic Algorithm for High-Performance Multiprocessor (고성능 멀티프로세서를 위한 유전 알고리즘 기반의 반복 데이터흐름 최적화 스케줄링 알고리즘)

  • Chang, Jeong-Uk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.115-121
    • /
    • 2015
  • In this paper, we proposed an iterative data-flow optimal scheduling algorithm based on genetic algorithm for high-performance multiprocessor. The basic hardware model can be extended to include detailed features of the multiprocessor architecture. This is illustrated by implementing a hardware model that requires routing the data transfers over a communication network with a limited capacity. The scheduling method consists of three layers. In the top layer a genetic algorithm takes care of the optimization. It generates different permutations of operations, that are passed on to the middle layer. The global scheduling makes the main scheduling decisions based on a permutation of operations. Details of the hardware model are not considered in this layer. This is done in the bottom layer by the black-box scheduling. It completes the scheduling of an operation and ensures that the detailed hardware model is obeyed. Both scheduling method can insert cycles in the schedule to ensure that a valid schedule is always found quickly. In order to test the performance of the scheduling method, the results of benchmark of the five filters show that the scheduling method is able to find good quality schedules in reasonable time.

Performance Enhancement Algorithm using Supervised Learning based on Background Object Detection for Road Surface Damage Detection (도로 노면 파손 탐지를 위한 배경 객체 인식 기반의 지도 학습을 활용한 성능 향상 알고리즘)

  • Shim, Seungbo;Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.95-105
    • /
    • 2019
  • In recent years, image processing techniques for detecting road surface damaged spot have been actively researched. Especially, it is mainly used to acquire images through a smart phone or a black box that can be mounted in a vehicle and recognize the road surface damaged region in the image using several algorithms. In addition, in conjunction with the GPS module, the exact damaged location can be obtained. The most important technology is image processing algorithm. Recently, algorithms based on artificial intelligence have been attracting attention as research topics. In this paper, we will also discuss artificial intelligence image processing algorithms. Among them, an object detection method based on an region-based convolution neural networks method is used. To improve the recognition performance of road surface damage objects, 600 road surface damaged images and 1500 general road driving images are added to the learning database. Also, supervised learning using background object recognition method is performed to reduce false alarm and missing rate in road surface damage detection. As a result, we introduce a new method that improves the recognition performance of the algorithm to 8.66% based on average value of mAP through the same test database.