This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.
In this paper, the image is received from the camera and the lane is sensed. There are various ways to detect lanes. Generally, the method of detecting edges uses a lot of the Sobel edge detection and the Canny edge detection. The minimum use of multiplication and division is used when designing for the hardware configuration. The images are tested using a black box image mounted on the vehicle. Because the top of the image of the used the black box is mostly background, the calculation process is excluded. Also, to speed up, YCbCr is calculated from the image and only the data for the desired color, white and yellow lane, is obtained to detect the lane. The median filter is used to remove noise from images. Intermediate filters excel at noise rejection, but they generally take a long time to compare all values. In this paper, by using addition, the time can be shortened by obtaining and using the result value of the median filter. In case of the Sobel edge detection, the speed is faster and noise sensitive compared to the Canny edge detection. These shortcomings are constructed using complementary algorithms. It also organizes and processes data into parallel processing pipelines. To reduce the size of memory, the system does not use memory to store all data at each step, but stores it using four line buffers. Three line buffers perform mask operations, and one line buffer stores new data at the same time as the operation. Through this work, memory can use six times faster the processing speed and about 33% greater quantity than other methods presented in this paper. The target operating frequency is designed so that the system operates at 50MHz. It is possible to use 2157fps for the images of 640by360 size based on the target operating frequency, 540fps for the HD images and 240fps for the Full HD images, which can be used for most images with 30fps as well as 60fps for the images with 60fps. The maximum operating frequency can be used for larger amounts of the frame processing.
시중에 운전자의 편의성을 높여주기 위해 Around-View라는 카메라를 이용한 영상처리 장치가 판매되고 있다. 이 시스템은 운전자들이 운전 중 이거나 차량 주차 시 운전자의 미숙한 조작 또는 운전자의 시야 확보가 불가능하여 발생하는 사고에 대해 사전에 미리 방지하고자 나온 시스템이다. 그런데, 편리한 운전을 위해 나온 시스템이 복잡한 설치 과정, 고가의 설치비용의 문제로 인하여 운전자들에게 널리 보급되지 못하고 있다. 첫째 고가의 장비, 둘째 어려운 개발 환경, 셋째 불편한 설치과정 등의 문제점으로 인하여 운전자들은 이 시스템을 접할 기회가 힘들고 개발자들은 이 시스템을 개발할 엄두를 못 내고 있는 상황이다. 이 중 한 가지 문제점이라도 해결이 된다면 사용자들은 조금 더 저렴한 비용으로 이 시스템을 접할 수 있을 거라고 생각된다. 본 논문에서 제안하고자 하는 AVM(Around-View Monitoring) 시스템은 앞서 말한 세 가지의 문제점 중 고가의 장비, 불편한 설치 과정 이 두 가지 문제를 최소화 시킨 시스템이다. 저렴한 USB 장치와 후방카메라를 이용하여 구매 비용이 많이 발생하는 문제를 해결 하였다. 그리고 불편한 설치과정을 고려하여 최대한 설치가 용이하도록 개발 하였다. 이 시스템으로 인하여 소비자들의 가격 부담을 줄여주려고 한다.
CMOS 카메라 영상의 화질을 좌우하는 것은 여러 가지가 있는데 그 중에서 영상 노출시간은 중요한 요소이다. 영상 노출시간이 길게 되면 화면 전체 영상이 밝아지게 되고 노출시간이 짧아지면 전체 영상이 어두워지게 된다. 정지 피사체를 사진 촬영할 경우 자동노출 시스템이 적절한 노출시간을 얻는데 충분한 시간이 주어지기 때문에 실시간성이 요구되지 않는다. 하지만 주행 중인 자동차의 블랙박스 같이 주변 빛 환경이 빠르게 변하게 되면 이에 맞추어서 노출시간도 실시간으로 반응하여 적용되어야 한다. 이를 위해서는 실시간성과 주변 빛 환경에 대하여 강건한 자동노출 시스템이 요구된다. 본 논문에서는 ZYNQ의 로직과 ARM코어를 적용한 임베디드 시스템 설계로 병렬 연산처리 가능한 실시간 제어 시스템을 설계하였고 이를 바탕으로 PID 제어를 통해서 66ms 이내에 원하는 목표 값으로 수렴하고 노이즈에 강건한 실시간 CMOS 자동 노출 시스템을 개발하였다.
자동차용 영상 사고기록장치(블랙박스)는 도로위의 일반적인 상황만을 촬영하게 된다. 또한, 급격한 조도변화의 상황에서는 주위의 환경을 제대로 인식하기 어렵고 렌즈 자체의 왜곡이 매우 심하기 때문에 사고 발생 시 명확한 증거로 사용하기 어렵다. 이러한 문제를 해결하기 위한 첫 번째 방법으로 정규화된 밝기 정보의 수표현자인 NLD(Normalized Luminance Descriptor)값과 정규화된 명암정보의 수표현자인 NCD(Normalized Contrast Descriptor)값을 정의하여 추출하고 두 값의 관계를 갖는 영상의 수표현자인 NIQ(Normalized Image Quality)값을 사용하여 급격한 조도변화에 대응하였다. 두 번째로, 어안렌즈가 디자인되는 방법을 기본으로 하는 FOV(Field Of View)모델을 이용하여 렌즈의 왜곡을 보정한다. 결과적으로 두 가지 영상왜곡은 각각 감마보정 및 렌즈왜곡보정의 영상처리 기법을 사용하여 병렬로 처리한 후 이를 하나의 영상으로 통합하는 알고리즘을 제안한다.
포트홀은 차량파손과 교통사고 유발 등의 사회문제를 유발시키고 있다. 포트홀을 효율적으로 관리하기 위해서는 빠르게 포트홀을 찾아내는 기술이 가장 중요하다. 기존의 포트홀 탐지 기법은 민원에 의한 수동식 신고방식을 사용하고 있어, 포트홀로 인해 발생하는 문제를 사전에 예방하지 못하고 있다. 최근 포트홀을 저비용으로 빠르게 탐지하기 위하여 영상 카메라를 이용한 연구가 많이 진행되고 있다. 본 논문에서는 사전에 연구되었던 포트홀 탐지 알고리즘의 탐지정확도를 개선하기 위한 Saliency Map 기반의 알고리즘을 제안한다. 기존 알고리즘은 포트홀이 그림자와 겹쳐있거나 포트홀의 내부 모양이 주변 도로노면과 비슷한 형태를 가지는 등의 복잡한 환경에서 포트홀을 탐지하지 못하는 문제를 가지고 있다. 이러한 문제를 해결하기 위하여 제안하는 알고리즘은 Saliency Map 알고리즘을 이용하여 보다 정확한 포트홀 후보 영역을 찾는다. 제안 알고리즘은 포트홀 후보영역 추출부와 결정부로 구성되며, 실험을 통하여 기존 알고리즘보다 더 높은 탐지 정확도를 가짐을 보인다.
복합 기능 기기의 발전에 따라 카메라는 방범 시스템, 운전자 보조 시스템 등 여러 분야에서 광범위하게 사용되고 있으며 많은 사람들은 이러한 시스템에 노출되어 있다. 따라서 시스템은 인간의 행동을 인식할 수 있고 인식된 행동으로부터 얻은 정보를 이용하여 유용한 기능을 사용자에게 제공할 수 있어야 한다. 본 논문은 이차원 영상 이미지에서 인식된 기계적 학습 접근 방법을 사용한 인간 행동 패턴 인식 기법을 제안한다. 제안된 방법은 인식된 사용자의 행동 패턴을 기반으로 사용자에게 유용한 기능을 실행하기 위한 정보를 제공하게 될 것이다. 먼저 소개하는 방법은 전화 통화 행동 인식이다. 차량 내부에 운전자 방향으로 설치된 블랙박스가 전화 통화 행동을 인식한다면 안전 운전을 위해서 운전자에게 경고를 줄 수 있다. 두 번째 제안하는 방법은 안전 운행을 위한 전방 주시 행동 인식으로서 운전자가 전방 주시하고 있는지 아닌지를 판단하기 위한 방법과 기준을 제안한다. 본 논문은 실시간 영상 조건에서 제안하는 인식 방법의 효용성을 실험 결과를 통해서 보여준다.
시중에 운전자의 편의성을 높여주기 위해 Around-View라는 카메라를 이용한 영상처리 장치가 판매되고 있다. 이 시스템은 운전자의 미숙한 조작 또는 운전자의 시야 확보가 불가능하여 발생하는 사고에 대해 사전에 미리 방지하고자 나온 시스템이다. 그런데, 편리한 운전을 위해 나온 시스템이 복잡한 설치 과정, 고가의 설치비용의 문제로 인하여 운전자들에게 널리 보급되지 못하고 있다. 첫째 고가의 장비, 둘째 어려운 개발 환경, 셋째 불편한 설치 과정 등의 문제점으로 인하여 운전자들은 이 시스템을 접할 기회가 힘들고 개발자들은 이 시스템을 개발할 엄두를 못 내고 있는 상황이다. 이 중 한 가지 문제점이라도 해결이 된다면 사용자들은 조금 더 저렴한 비용으로 이 시스템을 접할 수 있을 거라고 생각된다. 본 논문에서 제안하고자 하는 AVM(Around-View Monitoring) 시스템은 앞서 말한 세 가지의 문제점 중 고가의 장비, 불편한 설치 과정 이 두 가지 문제를 최소화 시킨 시스템이다. 저렴한 USB 장치와 후방카메라를 이용하여 구매 비용이 많이 발생하는 문제를 해결 하였다. 그리고 불편한 설치과정을 고려하여 최대한 설치가 용이하도록 개발 하였다. 이 시스템으로 인하여 소비자들의 가격 부담을 줄여주려고 한다.
현 지뢰탐지기는 탐지를 실시한 곳과 실시하지 않은 지역을 구분할 수 없고, 많은 인력과 시간이 낭비되는 문제점이 있으며, 사용자가 센서 헤드부를 일정한 속도로 움직이지 않거나, 너무 빨리 움직이는 경우 지뢰를 정확히 탐지하기가 곤란하다. 따라서 단방향 초음파 센싱신호를 통한 지뢰탐지 오류 문제점을 개선하고자, Human Body 안테나부, 메인마이크로프로세서 유닛부, 스마트 안경부, 바디장착형 LCD모니터부, 무선데이터 송수신부, 벨트형 전원공급부, 블랙박스형 카메라부, 보안통신 헤드셋으로 구성하여 전투복을 착용한 상태에서 신체의 머리, 몸통, 팔, 허리, 다리에 탈 부착식으로 장착, Superhigh Frequency RF Beam을 통해 지뢰를 탐지하는 Human Body 안테나부를 적용, 지뢰의 금속 비금속이 아닌, 지상(하)에 매설된 기폭제를 전방위($360^{\circ}$)로 탐지할 수 있고, 지뢰의 거리 위치 형태 재질을 2D 또는 3D 영상으로 스마트 안경 및 신체장착형 LCD모니터부에 실시간 표출시킬 수 있으며, 이로 인해 전투병이 지상(하)에 있는 지뢰를 회피, 신속하게 기동할 수 있다. 아울러 휴대용 배터리와 벨트형 전원공급부의 Twin-Self Supplements of electricity을 통해 별도의 충전 없이 3~7일간 전투를 수행할 수 있으며, 원격지의 전투상황을 원격지 전투지휘서버에서 실시간 모니터링할 수 있고, 전투병 1:1로 전투정보를 공유할 수 있어, 전투현장에 있는 것과 같은 생동감 있게 전투상황을 원격지휘할 수 있는 스마트전투시스템을 구축할 수 있는 Smart Wearable Minefield Detection System을 제안하고자 한다.
최근 증가하고 있는 도로 위 적재 불량 화물차는 비정상적인 무게 중심으로 인해 물체 낙하, 도로 파손, 연쇄 추돌 등 교통 안전에 위해가 되고 한번 사고가 발생하면 큰 피해가 유발할 수 있다. 하지만 이러한 비정상적인 무게 중심은 적재 불량 차량 인식을 위한 주행 중 축중 시스템으로는 검출이 불가능하다는 한계점이 있다. 본 논문에서는 이러한 사회 문제를 야기하는 적재 불량 차량을 관리하기 위한 객체 인식 기반 AI 모델을 구축하고자 한다. 또한 AI-Hub에 공개된 약 40만장의 대형차, 소형차, 중형차 별 적재 불량 차량과 일반차량으로 구분 된 데이터 셋 중 종류별로 제공되는 CCTV, 블랙박스, 카메라 시점의 적재 불량 차량 데이터 셋을 분석하여 전처리를 통해 적재 불량 차량 검지 AI 모델의 성능을 향상시키는 방법을 제시한다. 이를 통해, 원시 데이터를 활용한 학습 성능 대비 약 23% 향상된 적재 불량 차량의 검출 성능을 나타냄을 보였다. 본 연구 결과를 통해 공개 빅데이터를 보다 효율적으로 활용하여, 객체 인식 기반 적재 불량 차량 탐지 모델 개발에 적용할 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.