• Title/Summary/Keyword: black water

Search Result 930, Processing Time 0.025 seconds

Degradation of eriochrome black T by potassium ferrate (VI) (칼륨 페레이트에 의한 Eriochrome Black T 분해 연구)

  • Hoang, Nguyen Minh;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • The degradation of EBT (Eriochrome Black T) in an aqueous solution was investigated at various values of pH, Ferrate (VI) dosage, initial concentration, aqueous solution temperature. The maximum degradation efficiency was 95.42% at pH 7 and in that experimental condition, the kapp value was 872.87 M-1s-1. The degradation efficiency was proportional to the dosage of Ferrate (VI). Also, the initial rate constant of EBT degradation increased with decreasing of the EBT initial concentration. In addition, the degradation rate of EBT was increased from 74.04% to 95.42% when the temperature in the aqueous solution was increased from 10℃ to 45℃. The activation energy value was 11.9 kJ/mol for EBT degradation. Overall, the results of the degradation experiment showed that Ferrate (VI) could effectively oxidize the EBT in the aqueous phase.

Synthesis of Ag-doped black ZnO nano-catalysts for the utilization of visible-light (가시광선 활용을 위한 Ag 도핑 흑색 ZnO 나노 광촉매 합성)

  • Ui-Jun Kim;Hye-Min Kim;Seung-Hyo Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.3
    • /
    • pp.208-218
    • /
    • 2023
  • Photocatalysts are advanced materials which accelerate the photoreaction by providing ordinary reactions with other pathways. The catalysts have various advantages, such as low-cost, low operating temperature and pressure, and long-term use. They are applied to environmental and energy field, including the air and water purification, water splitting for hydrogen production, sterilization and self-cleaning surfaces. However, commercial photocatalysts only absorb ultraviolet light between 100 and 400 nm of wavelength which comprises only 5% in sunlight due to the wide band gap. In addition, rapid recombination of electron-hole pairs reduces the photocatalytic performance. Recently, studies on blackening photocatalysts by laser, thermal, and plasma treatments have been conducted to enhance the absorption of visible light and photocatalytic activity. The disordered structures could yield mid-gap states and vacancies could cause charge carrier trapping. Herein, liquid phase plasma (LPP) is adopted to synthesize Ag-doped black ZnO for the utilization of visible-light. The physical and chemical characteristics of the synthesized photocatalysts are analyzed by SEM/EDS, XRD, XPS and the optical properties of them are investigated using UV/Vis DRS and PL analyses. Lastly, the photocatalytic activity was evaluated using methylene blue as a pollutant.

A study on the optimum ratio of the ingredients in preparation of black sesame gruels (흑임자죽 재료배합비의 최적화 연구)

  • 박정리;김종군;김정미
    • Korean journal of food and cookery science
    • /
    • v.19 no.6
    • /
    • pp.685-693
    • /
    • 2003
  • The aim of this study was to develop a standardized recipe for black sesame gruel that has been preferred for generations as a nutritional food. The method focused on optimizing the mixing ratio of the components to improve the quality of the black sesame gruels that modem consumers would like. The results are summarized as follows: The more black sesame added to the gruel, the lower its brightness was, but the redness and yellowness was higher. The amount of black sesame made a significant difference in the viscosity, color, nutty taste, bitterness, appearance and overall preference. It was highest in the overall preference when the amount of black sesame was added 33g(40% of rice weight basis). Different types of rice were added to the black sesame gruel, and it was observed that the color value of the gruel was high in its brightness, redness and yellowness when 50g(60%) of glutinous rice was added to it. The black sesame gruel was most preferred when 50g of non-glutinous rice was added. The redness value was high when 15g(18%) of non-glutinous rice flour was added. The yellowness value was high when 25g(30%) of non-glutinous rice flour was added. This observation showed significant differences in the viscosity, color, nutty taste, bitterness, appearance and overall preference. In particular, the black sesame gruel was most preferred when 50g of non-glutinous rice flour was added. The addition of 7g(9%) of salt to the black sesame gruel showed the highest brightness. The redness and yellowness was the highest when 5g(6%) of salt was added. This observation showed a significant difference in the viscosity, color, nutty taste, bitterness, appearance and overall preference. The highest preference was observed when 2.5g(3%) of salt was added. Adding more materials increased the viscosity of the black sesame gruel. With increasing temperature, the viscosity became lower, and vice versa. The intensity of sweetness and spreadability was found to be proportional to the amount of additive material. In conclusion, the optimum recipe for black sesame gruels was obtained 33g(40%) of black sesame, 50g(60%) of glutinous rice (flour), 2.5g of salt, and 500$m\ell$ of water.

The mechanism of black core formation (블랙코어 형성 메커니즘)

  • Park Jiyun;Kim Yootaek;Lee Ki-Gang;Kang Seunggu;Kim Jung-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.208-215
    • /
    • 2005
  • The 10mm diameter aggregates made of clay, carbon and $Fe_2O_3$ were prepared to investigate the mechanism of black core formation. The specific gravity, absorption rate, percent of black core area, fracture strength, total Fe analysis, and XRF were measured at various compositions, sintering temperatures, sintering times, sintering atmospheres, and sintering methods. Small addition of $Fe_2O_3$ did not affect physical properties of the aggregates; however, the percent of black core area increased with increasing carbon contents and increasing sintering temperature. Specific gravity of the aggregates decreased and the water absorption ratio increased with increasing percent of black core area. The aggregates sintered at oxidation atmosphere showed clear border between shell and black core area. Hence, the aggregates sintered at reduction atmosphere showed only black core area in the cross-section of the aggregates. The specific gravity of the aggregates sintered at reduction atmosphere increased with increasing carbon contents and that was the lowest of all comparing other aggregates sintered at different atmospheres. Adsorption rate increased with increasing carbon contents at all atmospheres. The fast sintered aggregates showed lower specific gravity, higher absorption rate, and more black core area than the normally sintered aggregates. It was turned out that the aggregates having more black core area showed higher fracture strength than that of aggregates with no black core area. From the total Fe analysis, the concentration of Fe and FeO was higher at black core area than at shell. Because the concentration of $Fe_2O_3$ in the shell was higher than other area, the color of the shell appeared red. It was also turned out from the XRF analysis that carbon was exist only at black core area.

A Study on the Determination of Caffeine in Coffee, Black tea and Green Tea by high performance Liquid Chromatography (고속액체 크로마토크래피에 의한 커피, 홍차, 녹차중의 카페인 정량에 관한 연구)

  • 권익부;이윤수;우상규;이충영;서준걸
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.4
    • /
    • pp.213-217
    • /
    • 1990
  • A simple and practical method for the determination of caffeine in coffee, black tea and green tea was studied. The analysis of caffeine was performed by reverse phase high perfomance liquid chromatography using a ${\mu}-Bondapak$ C18 column at isocratic condition with methanol-acetic acid-water (20: 1: 79) on UV detector at 280 nm. The extraction and clean-up of caffeine in sample is based on combing a simple pretreatment with the use of a Sep-Pak Alumina A cartridge. The average recoveries of caffeine from several samples were 95.2 -101.3%, the relative standard deviation for the whole procedure was 0.10 ~ 0.62%, and the detection limit of caffeine in sample solution was about $0.1\;\mu\textrm{g}\;per\;ml$.

  • PDF

Application of Nanotechnology to Korean Black-Red Ginseng: Solubility Enhancement by Particle Size Reduction

  • Park, Seul-Ki;Kim, Yoon-Kyung;Youn, Hyung-Sun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.52-60
    • /
    • 2008
  • In order to investigate whether the particles reduced to almost nano grade might affect the chemical and physical properties of organic materials, whole Korean Black-Red Ginseng was pulverized into almost nano size and then ginsenosides, minerals, carbohydrates, lipids and proteins in the ultrafine particles were compared with those in the regular particles as control. The mean size of the ultrafine particles was in the 350 nm range, while that of the regular particles was $127{\mu}m$. More ginsenosides, minerals, carbohydrates, lipids and proteins were detected in the ultrafine particles than in the regular particles. Interestingly, more lipids from the ultrafine particles dissolved in the water than those from the regular particles in the ethanol. Absorption and transport of carbohydrate, lipid or antioxidant activity across the intestinal wall using everted intestine sacks of mice was also enhanced by particle size reduction at the almost nano scale. More cytotoxic effect against hepatoma cell growth by ultrafine particles was also found. These results could be used as the basic data for the understanding and evaluation of the effects of organic nanomaterials on the human health.

Isolation and Characterization of an Extremely Thermophilic Sulfur-metabolizing Bacterium from a Deep-sea Hydrothermal Vent System

  • Kwak, Yi-Seong;Kobayashi, Tetsuo;Akiba, Teruhiko;Horikoshi, Koki;Kim, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.36-40
    • /
    • 1994
  • A water sample was taken from a black smoker chimney of a deep-sea hydrothermal vent by using an unmanned submersible "Dolphin 3K". The temperature of the hydrothermal fluid from the black smoker was $276^{\circ}C$. After isolation by repeated serial dilutions, An extremely thermophilic bacterial strain was selected. The strain designated as DT1331, was an anaerobic, non-motile, coccoid shaped bacterium with about 0.5 to $1.0\;\mu\textrm{m}$ in diameter. The strain DT1331 could grow up to $93^{\circ}C$, but the optimum temperature of this strain was $80^{\circ}C$. The growth occurred in the pH range of 4.5 to 8.5 and the optimum pH was 6.0. The strain DT1331 required 1% to 5% NaCl for growth and cell lysis was observed below 1% NaCl concentration. The bacterium could grow on polypeptides such as tryptone, peptone, soytone and on proteins such as casein or gelatin. However, no growth was observed on single amino acids, sugar and organic acids. Hydrogen gas was detected slightly during growth. This bacterium obligately required elemental sulfur and hydrogen sulfide gas was produced during growth.

  • PDF

MULTISENSOR SATELLITE MONITORING OF OIL POLLUTION IN NORTHEASTERN COASTAL ZONE OF THE BLACK SEA

  • Shcherbak, Svetlana;Lavrova, Olga;Mytyagina, Marina;Bocharova, Tatiana;Krovotyntsev, Vladimir;Ostrovskiy, Alexander
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.989-992
    • /
    • 2006
  • The new approach to the problem of oil spill detection consisting in combined use of all available quasiconcurrent satellite information (AVHRR NOAA, TOPEX/Poseidon, Jason-1, MODIS Terra/Aqua, QuikSCAT) is suggested. We present the results of the application of the proposed approach to the operational monitoring of seawater condition and pollution in the coastal zone of northeastern Black Sea conducted in 2006. This monitoring is based on daily receiving, processing and analysis of data different in nature (microwave radar images, optical and infrared data), resolution and surface coverage. These data allow us to retrieve information on seawater pollution, sea surface and air-sea boundary layer conditions, seawater temperature and suspended matter distributions, chlorophyll a concentration, mesoscale water dynamics, near-surface wind and surface wave fields. The focus is on coastal seawater circulation mechanisms and their impact on the evolution of pollutants.

  • PDF

Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black

  • Chhun, Kean Thai;Choo, Hyunwook;Kaothon, Panyabot;Yune, Chan-Young
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Soil-cement stabilization is a type of ground improvement method which has been used to improve the engineering properties of soil. The unconfined compression test is the commonly used method to evaluate the quality of the stabilized soil due to its simplicity, reliability, rapidity and cost-effectiveness. The main objective of this study was to evaluate the effect of recovered carbon black (rCB) on the strength characteristic of cement-stabilized sand. Various rCB contents and water to cement ratios (w/c) were examined. The unconfined compression test on stabilized sand with different curing times was also conducted for a reconstituted specimen. From the test result, it was found that the compressive strength of cement-stabilized sand increased with the increase of the rCB content up to 3% and the curing time and with the decrease of the w/c ratio, showing that the optimum rCB concentration of the tested stabilized sand was around 3%. In addition, a prediction equation was suggested in this study for cement-stabilized sand with rCB as a function of the w/c ratio and rCB concentration at 14 and 28 days of curing.

Carbon Nano-Powder Functionalization and Disperisibility with Plasma Discharge

  • Gang, Yu-Seok;Jeong, Man-Gi;Lee, Deok-Yeon;Song, Seok-Gyun;Kim, Seong-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.491-491
    • /
    • 2013
  • A novel plasma system has been developed for 3-dimensional modification of the carbon nano-powders. Improvement of dispersion of these nano materials are studied by plasma discharge, not using chemical modification. The plasma process is considered to great advantages over wet chemical process due to environmental, economic viewpoint, and uniformity over the treated volume. The uniform dispersion is a critical factor for these material's nano composite applications. Using this plasma system, graphene, carbon black, and CNT was treated and functionalized. Several key discharge conditions such as Ar/H2/O2 or Ar/H2/NH3 gas ratio, treatment time, power, feeder's vibration frequency are investigated. Hydrophobic of graphene has turned some more into hydrophilic by reaction test with water, electrophoresis, surface contact angle test, and turbidity analysis. The oxygen content ratio in the plasma treated CNT has increased about 3.7 times than the untreatedone. In the case of graphene and carbon black, the oxygen- and nitrogen- content has been enhanced average 10%. O-H (N-H) peak, C-O (C-N) peak, and C=O (C=N) peak data have been detected by FTIR measurement and intensified compared to before-plasma treatment due to O2 or NH3 content.

  • PDF