• Title/Summary/Keyword: black soybean yogurt

Search Result 2, Processing Time 0.02 seconds

A Study on Manufacturing Black Soybean Yogurt (검정콩 요구르트 제조에 관한 연구)

  • Bang, Byung-Ho;Jeong, Eun-Ja
    • The Korean Journal of Food And Nutrition
    • /
    • v.20 no.3
    • /
    • pp.289-294
    • /
    • 2007
  • For the purpose of developing a functional yogurt, a new type of yogurt was prepared. To manufacture this new yogurt, 12% skim milk was added to the hot water extract of black soybeans. The yogurt was then evaluated for its acid production(pH and titratable acidity), number of viable cells, viscosity, quality-retention properties, and sensory properties. The titratable acidity of the yogurt with the added 5% black soybean hot-water extract was higher(2.07%) than that of the yogurt without the added extract(1.80%). The viscosity of the yogurt made by adding 5% black soybean hot-water extract was higher(5,040 cps) than that of the yogurt made with only skim milk(2,740 cps). Lactic acid bacteria propagation was stimulated by the addition of the 5% black soybean hot-water extract. When the yogurt prepared with the black soybean hot-water extract was kept at $7^{\circ}C$ for 14 days, its quality-retention was comparatively good. Finally the overall sensory score of the yogurt made with the added 5% black soybean hot-water extract was slightly lower than that of the yogurt made with only skim milk.

Optimal Mixing Conditions of Smoothie Added Small Black Soybean Using Response Surface Methodology (쥐눈이콩 첨가 스무디의 제조조건 최적화)

  • Joo, Na-Mi;Park, So-Yeon
    • Korean journal of food and cookery science
    • /
    • v.25 no.3
    • /
    • pp.337-344
    • /
    • 2009
  • The principal objective of this study was to determine the optimal mixing conditions of three different amounts of small black soybeans, sugar, and plain yogurt, for the preparation of a small black soybean smoothie. The experimental design utilized herein was based on the Central composite design methodology of response surface, which included 16 experimental points, including 2 replicates for the small black soybeans, sugar, and plain yogurt. The physiochemical and sensory properties of the test were measured, and these values were applied to the mathematical models. A canonical form and perturbation plot showed the influence of each ingredient on the mixed final product. The L value and a value decreased with increasing quantities of small black soybeans, but the b values increased with greater additions of small black soybeans. Sweetness increased with increasing amount of added sugar. The results of sensory evaluation showed very significant values for color (p<0.01), taste (p<0.05) and overall quality (p<0.05) in the predicted model. As a result, the optimum formulations by numerical and graphical methods were calculated as follows: small black soybean 79.46 g, plain yogurt 275.07 g, sugar 21.20 g.