• 제목/요약/키워드: bituminous coal

검색결과 209건 처리시간 0.022초

순환유동층에서 유.무연탄 혼소 특성 (Characteristics of Co-Combustion of Korean Anthracite with Bituminous Coal in a Circulating Fluidized Bed)

  • 이종민;김재성;이은모
    • 한국연소학회지
    • /
    • 제10권3호
    • /
    • pp.1-9
    • /
    • 2005
  • The characteristics of co-combustion of Korean anthracite and bituminous coal was determined in a TGA and a lab-scale CFB reactor. The combustion reactivity of Korean anthracite (E = 51.2 kcal/mol) was much lower than that of bituminous coal (E = 14.5 kcal/mol). As the addition amount of the bituminous coal into the anthracite was increased, the reactivity of the anthracite was found to be improved. The effluent rate of the emission gases from the CFB reactor was not changed appreciably when each coal burned. As the bituminous coal was added, however, the effluent rate of the emissions was increased. The unburned carbon in fly ash from the CFB reactor was decreased with increasing the ratio of bituminous coal in co-combustion. But as the ratio of the bituminous coal was larger than 40 %, the combustion reactivity was not increased any more.

  • PDF

Ignition Behavior of Single Coal Particles From Different Coal Ranks at High Heating Rate Condition

  • Lee, Dongfang;Kim, Ryang Gyoon;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.111-114
    • /
    • 2012
  • The ignition behavior of single coal particles of five kindes of coal with different ranks (low volatile bituminous, low volatile sub-bituminous, high volatile bituminous, lignite) with particle size of $150-200{\mu}m$ was investigated at high heating rate condition. Particles were injected into a laminar flow reactor and the ignition behavior was observed with high speed cinematography. Sub-bituminous were observed to ignite homogeneously; however, low volatile bituminous coal and lignite undergo fragmentation prior to igntion. The observation was analyzed with previous work.

  • PDF

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan;Zhu, Chuanjie;Ren, Jie;Lu, Ximiao;Ma, Cong;Li, Ziye
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.451-461
    • /
    • 2022
  • The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.

고려시대 선체출토 석탄의 재료학적 특성 및 국산 석탄과의 비교 연구 (Comparison Study for Domestic Coal and Material Characteristics of Coal from the Shipwreck of Koryo Dynasty)

  • 이장존;박석환;임성태;한민수
    • 보존과학회지
    • /
    • 제29권4호
    • /
    • pp.345-354
    • /
    • 2013
  • 태안군 마도 해역 해저에서 인양된 마도 1호선의 선체 내 외부에서 출토된 석탄의 지구화학적 및 광학적, 광물학적 특성을 분석하였다. 연구 결과, 석탄의 비중은 $1.28g/cm^3$로 약 10%의 광물질 함유 상태를 고려하면 순수한 석탄만의 비중은 $1.15g/cm^3$ 정도이며, 갈탄과 유연탄 사이의 범위 해당된다. X-선 회절분석 결과는 peak점의 $2{\theta}$$20^{\circ}{\sim}23^{\circ}$ 사이로 낮은 탄화정도의 석탄에 해당되었으며, 석탄구성물질 분류에서 비트리나이트 군이 93~94%, 엑시나이트 군이 5~6%, 인어티나이트군이 1% 이었다. 또한 석탄의 비트리나이트 평균반사율은 $R_{mean}$: 0.627로 고휘발분역청탄 C(high volatile bituminous C coal) 또는 아역청탄 A(sub-bituminous A coal)에 해당된다. 공업분석 결과 미국 광무국의 기준에 의하면 아역청탄 A(sub-bituminous A coal) 또는 고휘발분역청탄 C(high volatile bituminous C coal)에 해당되며, 원소 분석 결과 역청탄에 해당되는 점결탄으로 분류된다. 마도1호선 석탄과 국내 석탄을 비교 분석 결과 포항 인근 장기지역의 갈탄과 유사하였다.

순환유동층 보일러에서 무연탄-유연탄의 혼합연소 특성 (Co-combustion Characteristics of Mixed Coal with Anthracite and Bituminous in a Circulating Fluidized Bed Boiler)

  • 정의대;문승재
    • 플랜트 저널
    • /
    • 제6권2호
    • /
    • pp.70-77
    • /
    • 2010
  • This study investigated the characteristics of co-combustion of mixed anthracite (domestic and Vietnam) and bituminous coal (Sonoma, Australia) at circulating fluidized bed boiler in Donghae thermal power plant when mixing ratio of bituminous coal is variable. Co-combustion of bituminous coal contributes to improvement in general combustion characteristics such as moderately retaining temperature of furnace and recycle loop, reducing unburned carbon powder, and reducing discharge concentration of NOx and limestone supply owing to improvement in anthracite combustibility as the mixing ratio was increased. However, bed materials were needed to be added externally when the mixing ratio exceeded 40% because of reduction in generating bed materials based on reduction in ash production. When co-combustion was conducted in the section of 40 to 60% in the mixing ratio while the supplied particles of bituminous coal was increased from 6 mm to 10 mm, continuous operation was shown to be possible with upper differential pressure of 100 mmH2O (0.98 kPa) and more without addition of bed materials for the co-combustion of mixed anthracite and bituminous coal (to 50% or less of the ratio) and that of domestic coal and bituminous coal (to 60% of the ratio).

  • PDF

유연탄 발전소에서의 PM 및 PM2.5 배출특성 (Emission Characteristics of PM and PM2.5 from Bituminous Coal Combustion Power Plants)

  • 윤영식;김정훈;;손승욱;박광규;박경일;서용칠
    • 한국대기환경학회지
    • /
    • 제26권2호
    • /
    • pp.151-160
    • /
    • 2010
  • Particles emitted from three coal-fired power plants burning bituminous and sub-bituminous coals were examined for PM and size fractions PM>2.5 and PM2.5. The ratio of PM2.5/PM was ranged from 10 to 62%, and PM emission increased with the amount of coal feed, which was 7.23~15.66 kg/h. The emission range of PM2.5 from three power plants was 1.24~4.48 kg/h (dry), which was function of the mixed rate of viscous sub-bituminous coal in feed. Of course such effect should be examined by further tests in details. Based on the consumed coal and thermal load, the emission factors averaged were shown as 59.03 g-PM/ton-coal, 14.79 g-PM2.5/ton-coal and 22.51 g-PM/MWh, 5.54 g-PM2.5/MWh, respectively.

연탄 화력발전소 보일러에서 다탄종 연소가 슬래깅 발생에 미치는 영향 (The Effect of Multi-Coal Combustion on the Generation of Slagging in a Bituminous Coal-fired Power Plant Boiler)

  • 박지훈;유호선
    • 플랜트 저널
    • /
    • 제18권1호
    • /
    • pp.55-61
    • /
    • 2022
  • 본 연구에서는 역청탄으로 설계된 870MW급 유연탄 화력발전소를 대상으로 발전기 출력, 연소조건, 통풍조건을 일정하게 유지하면서 역청탄과 아역청탄을 혼합하여 연소함에 따른 슬래깅 발생 영향을 분석하였으며, 이에 따른 보일러 성능에 영향을 주지 않는 허용 가능한 혼탄 방안을 제시하였다. 아역청탄의 혼합 비율을 10%, 20%, 40%, 60%, 80% 등으로 조정하여 원소분석, 공업분석, 회융점 변화, 슬래깅 지수 등을 확인하였고, 적정 혼탄 조건은 아역청탄은 40% 이하로 혼탄하고, 회의 산성분 대비 염기성분 비율은 0.4이하 또는 1이상, 총 알칼리는 3.5이하, 융점 슬래깅 지수는 1,345℃ 이상, 원소분석 시 회함량은 13% 이하, 공업분석 시 회함량은 15% 이하, 초기용융점은 최소 1,200℃ 이상이어야 바람직하다고 판단된다.

  • PDF

발전용 역청탄과 저열량탄 혼소시 Tar/Soot의 배출 특성 연구 (Investigation of Tar/soot Yield of Bituminous and Low Rank Coal Blends)

  • 이병화;김진호;김규보;김승모;전충환
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.42-48
    • /
    • 2014
  • 미분탄의 연소 또는 열분해 과정으로부터 발생하는 tar-soot는 복사 열전달 및 질소산화물의 추가적인 발생 원인이라는 관점에서 의미 있게 다루어지고 있다. 최근 저열량탄이 증가함에 따라 시멘트의 원료로 재활용되던 석탄회에서 다량의 미연분과 tar-soot가 포함되어 오히려 다시 반입되는 사례가 빈번해지고 있다. 따라서 본 연구에서는 저열량탄 사용 확대에 따른 혼탄연소 조건에서 tar-soot의 배출특성을 살펴보기 위해 반응기로써 LFR(Laminar Flow Reactor)을 적용하였으며, 연료로는 현재 국내발전소에서 사용 중인 역청탄 2종(MOUNTAIN, MACARHTUR)과 아역청탄(KPU)을 이용하여 단탄별 tar-soot 배출특성과 혼소비에 따른 배출특성을 화염의 구조 변화와 함께 측정하였다. 휘발분이 많은 아역청탄의 soot cloud 길이는 역청탄에 비해 길었지만 전체적인 화염 길이는 짧아졌다. 단탄별 실험결과에서는 역청탄의 tar-soot 발생량이 아역청탄의 발생률보다 높았으며 역청탄 중 휘발분 함량이 많은 MOUNTAIN탄이 상대적으로 휘발분 함량이 적은 MACARHTUR탄의 tar-soot 발생률보다 높았다. 혼소시에는 단탄의 연소특성과는 다른 새로운 특성을 나타내었으며 저열량탄과 혼소되는 역 청탄의 종에 따라 tar-soot 발생량이 지배되는 것을 확인하였으나 혼소비에 따른 평균적 특성이 아닌 완전히 차별되는 배출특성을 나타냄에 따라 석탄의 등급에 따라 최적의 혼소비를 찾아서 연소시키는 것이 tar-soot 발생량을 줄일 수 있는 방법임을 의미한다.

역청탄과 아역청탄의 석탄가스환 및 IGCC 성능검토

  • 안달홍;나중희;송규소;김남호;김종진;지평삼
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1994년도 추계학술발표회 초록집
    • /
    • pp.68-77
    • /
    • 1994
  • The Integrated Gasification Combined Cycle(IGCC) power plant is one of Clean Coal Technology to meet the demand for clean and efficient electric power for the 21st century. This study is to investigate the impacts of changes in coal quality to the performances of gasification processes and IGCC plants. The selection of the most economic coal is an important attribute for the IGCC power generation technology. The performances of gasification processes was predicted, and compared with the results of Shell coal gasification demonstrantions. The IGCC performances with bituminous and sub-bituminous coal were predicted as well. It is obtained that the bituminous coal is superior to the sub-bituminous coal for IGCC power generation.

  • PDF

저급탄 미분기 화재발생 인자분석 연구 (Engineering Control of Mill Fire for High Volatile Sub-bituminous Coal)

  • 길상인;박호영;김영주;윤성환
    • 한국연소학회지
    • /
    • 제18권4호
    • /
    • pp.53-58
    • /
    • 2013
  • Lots of Coal power plants (about 30) using bituminous coals are being run in Korea. The use of high volatile low grade sub-bituminous coal is increasingly extended because of imbalance between the worldwide coal supply and demand. Mill-fire has been an important issue since the use of such sub-bituminous coal. In existing coal plants of Korea, shutdown of coal and air supplies could be only a way, and an alternative has not been found in suppressing the mill fire. The inside fowfield in the mills has a highly fuel-rich, low temperature, and high velocity and non-reactive such that it could be a nonreactive system essentially. Nevertheless, occasional fire-occurrence could be attributed to the existence of an ignition source. However it has not been so far investigated in detail. The current work has a focus on suppressing the mile fire via some parametric experimental study such as effects of temperature, residence time, ignition source, and inert gas mixing. The results show that an small amount of $CO_2$- or $N_2$-mixing with air is very effective in suppressing fire formation even at high temperatures or flying sparks. The results suggest that exhaust gas recirculation into the mill should be an alternative to suppress mill fire.