• Title/Summary/Keyword: bituminous

Search Result 251, Processing Time 0.03 seconds

Domestic Bituminous Coal's Calorific Value Trend Analysis (2010~2014) and Carbon Emission Factor Development (국내 유연탄의 발열량 추이 분석(2010~2014년) 및 탄소배출계수 개발)

  • Kim, Min wook;Cho, Changsang;Jeon, Youngjae;Yang, Jinhyuk;Sin, Hochul;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.4
    • /
    • pp.513-520
    • /
    • 2016
  • Korea's energy consumption has been constantly increasing. Final energy consumption was increased by an annual average of 2.9% compared to 2010. The consumption of all energy sources except for its oil was increased during the same time. While electric demand has increased coal consumption increased rapidly. Therefore, calorfic value and carbon emission factor development can improve the quality of Korea's greenhouse gas inventory. Calorific value is the amount of heat generated while burning coal. Caloric value is one of the most important factors in the development of carbon emission factors. Calorific value is used as the basis for the analysis of the various energy statistics. This study has calculated the other bituminous coal and coking coal's calorfic value by the data received from domestic coal-fired power plants and steel manufacturer. Calorofic value's trend analysis period is the year of 2010~2014. Through analyzing the carbon content it was calculated the carbon emission factor. The bituminous coal and coking coal's uncertainty analysis was performed using a Monte Carlo simulation.

Sub-bituminous Coal's Calorific Value Trend Analysis and Carbon Emission Factor Development (국내 아역청탄의 발열량 추이 분석과 탄소배출계수 개발)

  • Kim, Min wook;Cho, Changsang;Jeon, Youngjae;Yang, Jinhyuk;Sin, Hochul;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.145-151
    • /
    • 2017
  • Korea's energy consumption has been constantly increasing. Final energy consumption was increased by anannual average of 2.9% compared to 2010. The consumption of all energy sources except for its oil was increased during the same time. While electric demand has increased coal consumption increased rapidly. Therefore, calorfic value and carbon emission factor development can improve the quality of Korea's greenhouse gas inventory. Calorific value is the amount of heat generated while burning coal. Caloric value is one of the most important factors in the development of carbon emission factors. Calorific value is used as the basis for the analysis of the various energy statistics. This study has calculated the sub-bituminous coal's calorfic value by the data received from domestic coal-fired power plants. Calorofic value's trend analysis period is the year of 2011~2015. Through analyzing the carbon content it was calculated the carbon emission factor. The sub-bituminous coal's uncertainty analysis was performed using a Monte Carlo simulation.

Impacts of Energy Tax Reform on Electricity Prices and Tax Revenues by Power System Simulation (전력계통 모의를 통한 에너지세제 개편의 전력가격 및 조세수입에 대한 영향 연구)

  • Kim, Yoon Kyung;Park, Kwang Soo;Cho, Sungjin
    • Environmental and Resource Economics Review
    • /
    • v.24 no.3
    • /
    • pp.573-605
    • /
    • 2015
  • This study proposed scenarios of tax reform regarding taxation on bituminous coal for power generation since July 2015 and July 2014, estimated its impact on SMP, settlement price, tax revenue from year 2015 to year 2029. These scenarios are compared with those of the standard scenario. To estimate them, the power system simulation was performed based on the government plan, such as demand supply program and the customized model to fit Korea's power system and operation. Imposing a tax on bituminous coal for power generation while maintaining tax neutrality reducing tax rate on LNG, the short-term SMP is lowered than the one of the standard scenario. Because the cost of nuclear power generation is still smaller than costs of other power generation, and the nuclear power generation rarely determines SMPs, the taxation impact on SMP is almost nonexistent. Thus it is difficult to slow down the electrification of energy consumption due to taxation of power plant bituminous coal in the short term, if SMP and settlement price is closely related. However, in the mid or long term, if the capacity of coal power plant is to be big enough, the taxation of power plant bituminous coal will increase SMP. Therefore, if the tax reform is made to impose on power plant bituminous coal in the short term, and if the tax rate on LNG is to be revised after implementing big enough new power plants using bituminous coal, the energy demand would be reduced by increasing electric charges through energy tax reform. Both imposing a tax on power plant bituminous coal and reducing tax rate on LNG increase settlement price, higher than the one of the standard scenario. In the mid or long term, the utilization of LNG complex power plants would be lower due to an expansion of generating plants, and thus, the tax rate on LNG would not affect on settlement price. Unlike to the impact on SMP, the taxation on nuclear power plants has increased settlement price due to the impact of settlement adjustment factor. The net impact of energy taxation will depend upon the level of offset between settlement price decrease by the expansion of energy supply and settlement price increase by imposing a tax on energy. Among taxable items, the tax on nuclear power plants will increase the most of additional tax revenue. Considering tax revenues in accordance with energy tax scenarios, the higher the tax rate on bituminous coal and nuclear power, the bigger the tax revenues.

Assessment of potential environmental impact from fly ash landfill (국내 석탄회 육상매립의 오염 잠재성 평가)

  • Lee, Sang Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.4
    • /
    • pp.25-35
    • /
    • 1999
  • Fly ash, by-product from coal fired power station, has long been regarded as a potential contamination source for heavy metals and inorganics due to their enriched concentrations and associations with particle surface. Feed coal and fly ash samples were collected from two power stations; Yongdong deliang with domestic anthracite coals and Boryong with imported bituminous coals. The coal and fly ash samples were analyzed for chemical composition and mineral components, using XRF and XRD. Batch leaching experiments were conducted by agitating samples with deionised water for 24 hours. Anthracite coals are generally higher in Al and Si contents than bituminous coals. This is due to the higher ash contents of the anthracite coal than bituminous coal. The chemistry of the two fly ash samples shows broadly similar compositions each other, except for the characteristically high contents of Cr in anthracite coal fly ash. Leaching experiments revealed that concentrations of metals gradually decreased with leachings in general. However, measurable amounts of metals were present in the effluent from weathered ash and the samples subjected to the leaching procedure. These metals are likely to indicate that the metals in fly ash were incorporated into glass fraction as well as associated with particle surface of samples. Dissolution of aluminosilicate glass would control releasing heavy metals from fly ash as weathering progresses during landfill with implication of possible groundwater contamination through fly ash landfill.

  • PDF

Study on the Correlation between Thermal Characteristics and Heat Accumulation in the Coal Pile (석탄의 열적 특성과 석탄 내부의 승온 특성과의 상관관계 연구)

  • Lee, Hyun-Dong;Kim, Jae-Kwan
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.58-64
    • /
    • 2010
  • Spontaneous ignition tests of five different coals with non-iso-thermal and iso-thermal test method based on the standard test procedure of NF T20-036 were carried. These five coals included the 2 low rank coals and 3 bituminous coals. Test results showed that the ignition temperatures of all coals at the iso-thermal conditions were higher than that of non-isothermal condition, and those of low rank SM and BR coal in both nonisothermal and isothermal conditions were lower than bituminous AN and CN coals. The chemical species of coals such as oxygen and hematite also plays an important role in enhancing the ignition rate that the ignition temperature of SM coal was lowered. The heat accumulation tendency of five coals inside outdoor stack pile was monitored with emphasis on the change in the temperature of the coal depth in stack pile. In case of low rank BR coal, its temperature inside coal stack pile due to the rate of high heat accumulation and oxidation was $59^{\circ}C$ compared to $51^{\circ}C$ for other SW bituminous coal. And the heat accumulation rate inside coal stack piles was increased with increased the Cp value which it was defined as the specific heat of coal at constant pressure, whereas other factors such as thermal diffusivity and conductivity of coal relatively had less effect on heat accumulation.

A study on Desuifurization by Anthracite-Bituminous coal blend combustion in a fluidized bed combustor -A desulfurization using natural limestone- (유동층 연소로에서 유, 무연탄 혼합연소시 탈황에 관한 연구 -천연석회석을 이용한 황산화물 제어-)

  • 조상원;민병철;정종현;전영화;김대영;정덕영
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.102-108
    • /
    • 1997
  • It has been studied that SO$_2$ removal efficiency of anthracite-bituminous coal blend combustion in a fludized bed coal combustor. The objectives of this study were to investigate SO$_2$ removal characteristics of coal blend combustion with Ca/S, anthracite fraction, bed temperature, and limestone size. The experimental results were presented as follows First, the effect of the desulfurization by the dia size of limestone was great and SO$_2$ removal efficiency was highest in limestone dia 631 $\mu$m. Second, as air velocity increased, the desulfurization rate decreased a little. But the difference of the desulfurization rate according to air velocity was not too large. As the height of fluidized bed combustor increased regardless of air velocity, SO$_2$ concentration tends to increase largely. Third, as Ca/S mole ratio incresed, SO$_2$ desulfurization rate incresed rapidly up to Ca/S mole ratio 3 while the desulfurization rates did not increse too largely in the range of more than the level. Forth, the bed temperature had a great effect on the desulfurization rate and the desulfurization rate tended to increase slightly as anthracite fraction increased.

  • PDF

Desulfurization Characteristics for Anthracite Coal Power Plant by Increasing Bituminous Coal Fuel (국내 무연탄 발전소 역청탄 사용시 탈황 특성 연구)

  • Kim, Jeong-You;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • The sulfur oxides is one of important materials to come about air pollution at thermal plant consuming fossil fuel. The several flue gas desulfurization equipments are installed and operated to decrease sulfur oxides. The flue gas desulfurization of our thermal plant is designed for optimizing flue gas desulfurization technical development and research by Korea Electric Power Research Institute. We operate this desulfurization equipment. Now, our country imports nearly 97 percentage of the energy source and competes with the world for the energy because of the sudden rise of raw materials cost. The fuel cost decrease of power plants is the most important factor of the operation. The fuel used in the experiment is the domestic anthracite from Kangwon Taeback and the bituminous coal from Taldinsky Mine in Russia. This Study is experimental investigations of desulfurization characteristics for domestic anthracite power plant by increasing bituminous coal. We surveyed possible parameters and conducted the performance about desulfurization equipment in Yong Dong thermal power plant.

  • PDF

A Study of Co-Combustion Characteristics of North Korean Anthracite and Bituminous Coal in 2 MWe CFBC Power Plant (2 MWe 순환유동층 발전 플랜트에서 유연탄과 북한 무연탄 혼소시험 특성 연구)

  • Han, Keun-hee;Hyun, Ju-soo;Choi, Won-kil;Lee, Jong-seop
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.580-586
    • /
    • 2009
  • In this study, co-combustion characteristics of Chinese bituminous coal and North Korean anthracite were investigated using a 2 MWe scale circulating fluidized bed power plant. At first, the combustion efficiency of bituminous coal of China and Australia as a function of excess air ratio and temperature were observed. The results showed that the combustion efficiency was influenced by particle size and volatile content of coal, the combustion efficiency of Chinese bituminous coal was over 99.5%. The unburned carbon particles from fly ash and bottom ash were a content 5~7% and 0.3%, respectively. The combustion efficiency with the mixture ratio 20% of bituminous coal and anthracite decreased over 5% because of the increase of entrained particles by a small average particle size of anthracite in the combustor. However, the outlet concentration of $SO_2$ and $NO_x$ was not changed remarkably. The concentrations of the typical air pollutants such as $NO_x$ and $SO_2$ were 200~250 ppm($O_2$ 6%), 100~320 ppm($O_2$ 6%) respectively. The outlet concentration of $NO_x$ was decreased to 30~65% with $NH_3$ supplying rate of 2~13 l/min in SCR process. The $SO_x$ removal efficiency was up to 70% by in-furnace desulfurization using limestone with Ca/S molar of approximately 6.5. With wet scrubbing using $Mg(OH)_2$ as absorbent, the $SO_x$ removal efficiency reached 100% under near pH 5.0 of scrubbing liquid.

A Study on the Use of Low-Grade Domestic Anthracite by Anthracite - Bituminous Coal Blend Combustion in a Fluidized Bed Combustor (유동층 연소로에서 유.무연탄 혼합 연소법을 이용한 국내산 저질 무연탄의 활용에 관한 연구)

  • 정종현;조상원
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.267-276
    • /
    • 1997
  • It has been studded that combustion and the production of air pollution of anthracite - bituminous coal blend In a fluidized bed coal combustor, The objects of thIns study were to investigate mixing characteristics of the particles as well as the combustibility of the low grade domestic anthracite coal and Imported h19h calorific bltununous coal in the fluidized bed coal combustor. They were used as coal samples ; the domestic low grade anthracite coal with heating value of 2,010kca1/kg and the Imported high grade bituminous coal with beating value of 6,520kca1/kg. Also, the effects of air flow rate and anthracite fraction on the reaching time of steady state condition have been studied. The experimental results are presented as follows. The time of reaching to steady state was affected by the temperature variation. The steady state time was about 120 minute at 300sc1h which was the fastest. It has been found that $O^2$ and $CO^2$ concentration were reached steady state at about 100 minute. It has been found that $O^2$ concentration decreased and $CO^2$ concentration increased as the height of fluidlzed bed Increased. It was found that splash zone was mainly located from 25cm to 35cm above distributor. Also, as anthracite traction Increased, the mass of elutrlatlon particles Increased, and $CO^2$ concentration decreased. As gk flow rate Increased,$O^2$ concentration decreased and $CO^2$ concentration increased. Regardless of anthracite fraction and flow rate, the uncombustible weight percentage according to average diameter of elutriation particles were approldmately high In the case of One Particles. As anthracite traction and k now rate Increased, elutriation ratio Increased. As anthracite fraction was increased, exit combustible content over feeding combustible content was Increased. Regardless of anthracite fraction, size distribution of Ued material from discharge was almost constant. Over bed temperature 85$0^{\circ}C$ and excess air 20% , the difference of combution efficiencies were little. It is estimate that the combustion condition In anthracite-bituminous coal blend combustion is suitable at the velocity 0.3m/s, bed temperature 85$0^{\circ}C$, the excess air 20%.

  • PDF