KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.11
/
pp.4585-4603
/
2015
Video streaming services make up a large proportion of Internet traffic on both fixed and mobile access throughout the world. Adaptive streaming allows for dynamical adaptation of the bitrate with varying network conditions, to guarantee the best user experience. Adaptive bitrate algorithms face a significant challenge in correctly estimating the throughput as it varies widely over time. In this paper, we first evaluate the throughput estimation techniques and show that the method that we have used offers stable response to throughput fluctuations while maintaining a stable playback buffer. Then, we propose an adaptive bitrate scheme that intelligently selects the video bitrates based on the estimated throughput and buffer occupancy. We show that the proposed scheme improves viewing experience by achieving a high video rate without taking unnecessary risks and by minimizing the frequency of changes in the video quality. Furthermore, we show that it offers a stable response to short-term fluctuations and responds swiftly to large fluctuations. We evaluate our algorithm for both constant bitrate (CBR) and variable bitrate (VBR) video content by taking into account the segment sizes and show that it significantly improves the quality of video streaming.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.11
/
pp.4519-4533
/
2015
Hypertext Transfer Protocol (HTTP) adaptive streaming has become a new trend in video delivery. An HTTP adaptive streaming client needs to effectively estimate resource availability and demand. However, due to the bitrate of the video encoded in variable bitrate (VBR) mode, a bitrate mismatch problem occurs. With the rising demand for mobile devices, the likelihood of cases where two or more HTTP adaptive streaming clients share the same network bottleneck and competing for available bandwidth will increase. These mismatch and competition issues lead to network congestion, which adversely affects the Quality of Experience (QoE). To solve these problem, we propose a video rate adaptation scheme for the HTTP video streaming to guarantee and optimize the QoE. The proposed scheme estimates the available bandwidth according to the bitrate of each segment and also schedules the segment request time to expedite the response to the bandwidth variation. We used a multi-client simulation to prove that our scheme can effectively cope with drastic changes in the connection throughput and video bitrate.
HTTP adaptive streaming has recently emerged to handle the rapidly growing traffic and to provide high quality multimedia contents. To improve the QoE (Quality of Experience) for HTTP adaptive streaming service, the average video bitrate should be maximized, and the video switching frequency (difference of bitrate between adjacent segments) and video stalling events need to be minimized. The recently proposed quality adaptation algorithms for HTTP adaptive streaming do not provide high QoE, since detailed QoE factors such as video switching frequency and bitrate difference of adjacent segments, are not considered. In this paper, we propose a SQA (Smooth Quality Adaptation) algorithm to improve the user QoE. The proposed algorithm provides the smoothed QoE, such that it minimizes the unnecessary video switching events by maintaining the quality in a certain period, thus minimizing the bitrate difference of adjacent segments. Through simulation, we confirm that the proposed algorithm reduces the unnecessary switching events, and prevents the sudden decrease in video quality.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.8
/
pp.3856-3872
/
2018
HTTP-based adaptive streaming (HAS) has recently been widely deployed on the Internet. In the HAS system, a video content is encoded at multiple bitrates and the encoded video content is segmented into small parts of fixed durations. The HAS client requests a video segment and stores it in the playout buffer. The rate adaptation algorithm employed in HAS clients dynamically determines the video bitrate depending on the time-varying bandwidth. Many studies have shown that an efficient rate adaptation algorithm is critical to ensuring quality-of-experience in HAS systems. However, existing algorithms have problems estimating the network bandwidth because bandwidth estimation is performed on the client-side application stack. Without the help of transport layer protocols, it is difficult to achieve accurate bandwidth estimation due to the inherent segment-based transmission of the HAS. In this paper, we propose an alternative approach that utilizes the playout buffer occupancy rather than using bandwidth estimates obtained from the application layer. We start with a queueing analysis of the playout buffer. Then, we present a buffer-aware rate adaptation algorithm that is solely based on the mean buffer occupancy. Our simulation results show that compared to conventional algorithms, the proposed algorithm achieves very smooth video quality while delivering a similar average video bitrate.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39B
no.6
/
pp.341-349
/
2014
Dynamic adaptive streaming over HTTP (DASH) is the most recent and promising technology to support high quality streaming services. In dynamic adaptive streaming over HTTP (DASH), a client consecutively estimates the available network bandwidth and decides the transmission rate for the forthcoming video chunks to be downloaded. In this paper, we propose a novel rate adaptation algorithm called quality of experience QoE-enhanced adaptation algorithm over DASH (QAAD), which preserves the minimum buffer length to avoid interruption and minimizes the video quality changes during the playback. We implemented a DASH test bed and conducted extensive experiments. Experimental results demonstrate that under fluctuating network conditions, QAAD provides seamless streaming with stabilized video quality while the previous buffer-aware algorithm (i.e., QDASH[9]) frequently changes the video quality and undergoes the interruption.
These days, streaming users are using ABR (Adaptive Bitrate) technique services by requesting the most adequate video rate selectively based on their own channel states. Most ABR related video rate adaptation techniques are only focused on real-time bitrate adaptations based on their own channel state, and misses energy limited characteristics that come from a mobile device's battery dependence. In other words, the mobile device's important characteristics and accompanying energy consumption are not being considered and causes dissatisfaction over streaming services. In this paper, we propose energy efficient prefetching based dynamic adaptive video streaming techniques, which saves unnecessary consumed energy while providing video rates of the same performance. Our scheme continuously turns off energy modules with enough streaming in the buffer and turns on in case of the opposite situation to save energy. Through the performance evaluation, this study's proposed scheme is 60% better than the previous work at global average mobile download speed.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.6
/
pp.2144-2159
/
2015
CISCO VNI predicted an average annual growth rate of 66% for mobile video traffic between 2014 and 2019 and accordingly much academic research related to video streaming has been initiated. In video streaming, Adaptive Bitrate (ABR) is a streaming technique in which a source video is stored on a server at variable encoding rates and each streaming user requests the most appropriate video encoding rate considering their channel capacity. However, these days, ABR related studies are only focusing on real-time rate adaptation omitting energy efficiency though it is one of the most important requirement for mobile devices, which may cause dissatisfaction for streaming users. In this paper, we propose an energy efficient prefetching based dynamic adaptive streaming technique by considering the limited characteristics of the batteries used in mobile devices, in order to reduce the energy waste and provide a similar level of service in terms of the average video rate compared to the latest ABR streaming technique which does not consider the energy consumption. The simulation results is showing that our proposed scheme saves 65~68% of energy at the average global mobile download speed compared to the latest high performance ABR algorithm while providing similar rate adaptation performance.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.6
s.312
/
pp.60-70
/
2006
Currently, Scalable Video Coding (SVC) is being standardized. By using scalability of SVC, QoS managed video streaming service is enabled in heterogeneous networks even with only one original bitstream. But current SVC is insufficient to dynamic video conversion for the scalability, thereby the adaptation of bitrate to meet a fluctuating network condition is limited. In this paper, we propose dynamic full-scalability conversion method for QoS adaptive video streaming in H.264/AVC SVC. To accomplish full scalability dynamic conversion, we propose corresponding bitstream extraction, encoding and decoding schemes. On the encoder, we newly insert the IDR NAL to solve the problems of spatial scalability conversion. On the extractor, we analyze the SVC bitstream to get the information which enable dynamic extraction. By using this information, real time extraction is achieved. Finally, we develop the decoder so that it can manage changing bitrate to support real time full-scalability. The experimental results showed that dynamic full-scalability conversion was verified and it was necessary for time varying network condition.
Adaptive bitrate (ABR) streaming technology has become an important and prevalent feature in many multimedia delivery systems, with content providers such as Netflix and Amazon using ABR streaming to increase bandwidth efficiency and provide the maximum user experience when channel conditions are not ideal. Where such systems could see improvement is in the delivery of live video with a closed loop cognitive control of video encoding. In this paper, we present streaming camera system which provides spatially and temporally adaptive video streams, learning the user's preferences in order to make intelligent scaling decisions. The system employs a hardware based H.264/AVC encoder for video compression. The encoding parameters can be configured by the user or by the cognitive system on behalf of the user when the bandwidth changes. A cognitive video client developed in this study learns the user's preferences (i.e. video size over frame rate) over time and intelligently adapts encoding parameters when the channel conditions change. It has been demonstrated that the cognitive decision system developed has the ability to control video bandwidth by altering the spatial and temporal resolution, as well as the ability to make scaling decisions
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2017.06a
/
pp.197-200
/
2017
퍼지 논리를 기반으로 한 적응형 스트리밍 기법인 FDASH 적응 알고리즘은 빠르게 변하는 네트워크 상황에서 우수한 콘텐츠의 화질을 보장하면서 끊김 없는 서비스를 제공하는 특성을 보이지만 비디오의 화질이 자주 변하기 때문에 최고의 사용자 체감 품질 (QoE: Quality of Experience)을 제공하지 못 할 수도 있다. 본 논문에서는 제한된 버퍼 크기를 가지고 동일한 콘텐츠의 화질을 보장하면서도 비디오 화질의 변화 횟수를 줄여서 최적의 QoE를 제공할 수 있도록 하는 변환된 퍼지 논리 기반의 DASH 적응 알고리즘을 제안하고자 한다. 제안된 방식은 우선 퍼지 논리 제어부(FLC : Fuzzy Logic Controller)의 수정을 통하여 다음 세그먼트의 비트율에 대해 최적의 판단을 하도록 하였고, 세그먼트 비트율 필터링 모듈 (SBFM: Segment Bitrate Filtering Module)을 추가하여 비디오 화질의 변화 횟수가 최소화 될 수 있도록 하였으며, 스트리밍 서비스 시작 시 SBFM에 의해 일정시간 저화질의 비디오를 시청해야 하는 상황을 막기 위한 Start Mechanism을 추가하였고, 마지막으로 버퍼의 오버플로우를 방지하기 위해 Sleeping Mechanism을 추가하였다. NS-3를 이용한 네트워크 모의실험 결과를 통해 제안된 방식이 FDASH 방식에 비하여 제한된 버퍼크기 상황 하에서도 오버플로우가 발생하지 않으며 점대점(Point to Point) 상황에서는 거의 동일 화질 성능을 보이면서도 비디오 화질 변화 횟수를 50% 이상 줄일 수 있음과 일반 Wifi환경에서는 오히려 17.8%정도 더 뛰어난 비디오 화질 성능을 보이면서 비디오 화질변화 횟수 측면에서는 53.1%정도 줄일 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.