• Title/Summary/Keyword: bite force analysis

Search Result 44, Processing Time 0.029 seconds

Comparative Analysis of Orofacial Myofunctional in Adults and Eldery People (성인과 노인의 구강근기능 영향요인 분석)

  • Kim, Seol-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.303-310
    • /
    • 2019
  • The purpose of this study was to compare the oralmyofunctions (occlusal force, tongue pressure, lip force) of adults and elderly people. And analyzed the factors affecting oral health related quality of life and dysphagia. The study was conducted on 73(over 20 years of age) Residing in Daejeon and Nonsan From December 2017 to May 2018. The data was analyzed using one-way ANOVA, pearson's correlation and multiple regression. The masticatory strength of each age group evaluated the right and left posterior occlusal forces. the elderys group (8.93, 10.80) were lower than adults group(12.51, 14.61) and middle age group(11.63, 14.75)(p>0.05). The tongue pressure was statistically significant lower in eldery group(37.43) than the adult group(60.55), middle-aged group(50.61) (p=0.000). In addition lip force was significantly lower in eldery group(8.57) than adult(12.01), middle-aged(11.37)(p= 0.000). The tongue pressure was positively correlated with the number of natural teeth(r=.566, p<.05), and the lip force (r=.497, p<.05). The quality of life quality related to oral health and dysphagia was tongue strength(p<0.05). It is necessary to recognize the risk of declining oral muscle function caused by aging. especially tongue strength is associated with quality of life and dysphagia. In order to improve the quality of life related to oral health in the aged society, the necessity of regular oral administration and oral muscle training was proposed.

THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF THE MANDIBULAR CONDYLE DURING UNILATERAL CLENCHING (편측저작시 하악골 과두의 응력분포에 관한 삼차원 유한요소분석적 연군)

  • Nam, Do-Hyun;Hoe, Seong-Joo;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.517-534
    • /
    • 1997
  • It has been held that excessive mechanical forces to the osseous and soft tissues of the TMJ result in joint dysfunction. Understanding the stress pattern on TMJ is very important in TMJ research. But, it is very difficult to measure directly the biomechanical stress distribution in the TMJ when the mandible is loaded. Therefore, stress distribution in the TMJ during functional movement was studied through animal experiment or mathematical model. It was observed and compared the stress distribution occuring in the working and balancing condyle when lower right canine, lower right first molar and lower right second molar were clenched by the three dimensional finite element analysis. Also, stress distribution in the working and balancing condyles were observed and compared when $20^{\circ}$ forward and buccal bite forces were applied to the first molar. The results were as follows : 1. Stress distribution in the condyles during unilateral clenching of the first molar, second molar, canine showed no difference. In the working condyle, tensile force was concentrated on the lateral aspect of the condylar articular surface and condylar neck. And compressive force was concentrated on the anteromedial and lateral aspect of condyle. In the balancing condyle, tensile and compressive forces were concentrated on the lateral aspect of the condylar articular surface and stress transmission to the temporal bone was not observed. 2. When lateral forces were applied to the first molar, tensile forces were concentrated on the medial aspect of the condylar neck and condylar posterior surface in working and balancing condyle. Compressive force was concentrated on the anteromedial and lateral surface of the condyle and stress transmission to the temporal bone was not observed. 3. During unilateral clenching, stress in the working condyle decreased as the occlusal load moved posteriorly while the stress in the balancing condyle increased. when lateral force was applied to first molar, the incremental amount of stress was greater than vertical load. 4. During unilateral clenching, the average balancing/working condyle stress ratio was 2.52. There was a greater concentration of stress in the balancing condyle. The ratio increased as the occlusal load moved posteriorly and decreased considerably when lateral forces were applied to the first molar.

  • PDF

Comparison of stress distribution in bone and implant-supported dental prosthesis with zirconia and titanium implants: a 3-dimensional finite element analysis (지르코니아 및 티타늄 임플란트를 사용한 지지골 및 임플란트 유지 수복물의 응력 분포 비교: 3차원 유한 요소 분석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.348-354
    • /
    • 2020
  • Purpose: Zirconia is differentiated from other ceramics because of its high resistance to corrosion and wear, excellent flexural strength (900~1400 MPa), and high hardness. Dental zirconia with proven mechanical/biological stability is suitable for the manufacture of implants. However, there are limited in vivo studies evaluating stress distribution in zirconia compared with that in titanium implants and studies analyzing finite elements. This study was conducted to evaluate the stress distribution of the supporting bone surrounding zirconia and titanium implants using the finite element analysis method. Methods: For finite element analysis, a single implant-supported restoration was designed. Using a universal analysis program, eight occlusal points were set in the direction of the occlusal long axis. The occlusal load was simulated at 700 N. Results: The zirconia implant (47.7 MPa) von Mises stress decreased by 5.3% in the upper cortical bone compared with the titanium implant (50.2 MPa) von Mises stress. Similarly, the zirconia implant (20.8 MPa) von Mises stress decreased by almost 4% in the cancellous bone compared with the titanium implant (21.7 MPa) von Mises stress. The principal stress in the cortical and cancellous bone exhibited a similar propensity to von Mises stress. Conclusion: In the supporting bone, the zirconia implant is able to reduce bone resorption caused by mechanically transferred stress. It is believed that the zirconia implant can be a potential substitute for the titanium implant by reinforcing aesthetic characteristics and improving stress distribution.

Relationships between Descriptive Sensory Attributes and Physicochemical Analysis of Broiler and Taiwan Native Chicken Breast Meat

  • Chumngoen, Wanwisa;Tan, Fa-Jui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.1028-1037
    • /
    • 2015
  • Unique organoleptic characteristics such as rich flavors and chewy texture contribute to the higher popularity of native chicken in many Asian areas, while the commercial broilers are well-accepted due to their fast-growing and higher yields of meat. Sensory attributes of foods are often used to evaluate food eating quality and serve as references during the selection of foods. In this study, a three-phase descriptive sensory study was conducted to evaluate the sensory attributes of commercial broiler (BR) and Taiwan native chicken (TNC) breast meat, and investigate correlations between these sensory attributes and instrumental measurements. The results showed that for the first bite (phase 1), TNC meat had significantly higher moisture release, hardness, springiness, and cohesiveness than BR meat. After chewing for 10 to 12 bites (phase 2), TNC meat presented significantly higher chewdown hardness and meat particle size, whereas BR meat had significantly higher cohesiveness of mass. After swallowing (phase 3), TNC meat had higher chewiness and oily mouthcoat and lower residual loose particles than BR meat. TNC meat also provided more intense chicken flavors. This study clearly demonstrates that descriptive sensory analysis provides more detailed and more objectively information about the sensory attributes of meats from various chicken breeds. Additionally, sensory textural attributes vary between BR and TNC meat, and are highly correlated to the shear force value and collagen content which influence meat eating qualities greatly. The poultry industry and scientists should be able to recognize the sensory characteristics of different chicken meats more clearly. Accordingly, based on the meat's unique sensory and physicochemical characteristics, future work might address how meat from various breeds could best satisfy consumer needs using various cooking methods.

Finite Element Analysis of Edge Fracture of Electrical Steel Strip in Reversible Cold Rolling Mill (가역식 냉간 압연기에서 전기강판의 에지 파단에 관한 유한요소해석)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1619-1625
    • /
    • 2012
  • An electrical steel strip is commonly used as a core material in all types of electric transformers and motors. It is produced by a cold rolling process. In this paper, a damage-mechanics-based approach that predicts the edge fracture of an electrical steel strip during cold rolling is presented. We adopted the normal tensile stress criterion and the fracture energy method as a damage initiation criterion and a damage evolution scheme, respectively. We employed finite element analysis (FEA) to simulate crack initiation and propagation at the initial notch located at the edges of the strip. The material constants required in FEA were experimentally obtained by tensile tests using a standard and a notched sheet-type specimen. The results reveal that the edge crack was initiated at the entrance of the roll bite and that it rapidly evolved at the exit. The evolution length of the edge crack increased as the length of the initial notch as well as the front tension reel force of the strip increased.

Analysis of functional load on the dentated skull with unilateral molar loss during simulated bilateral clenching clenching (이악물기 치아접촉시 편측 구치 상실을 지닌 두개골의 부하분석)

  • Jeong, SeogJo;Jeong, SeungMi;Kang, DongWan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.17 no.4
    • /
    • pp.245-256
    • /
    • 2001
  • The purpose of this study is to analyze the mechanical stress and displacement on the jaws during the simulated bilateral clenching task on the three-dimensional finite element model of the dentated skull with unilateral molar loss. For this study, the computed tomography(G.E.8800 Quick, USA) was used to scan the total length of human skull in the frontal plane at 2.0mm intervals. The fully assembled finite element model consists of the articular disc, maxilla, mandible, teeth, periodontal ligament and cranium. The FE model was used to simulate the bilateral clenching in intercuspal position. The loading condition was the force of the masseter muscle exerted on the mandible as reported by Korioth et al. degrees of freedom of the zygomatic region where the masseter muscle is attached were fixed as restraints. In order to reflect the actual action of the muscles force, the displacement of the region was attached where the muscle is connected to the temporal bone and restraint conditions were given values identical to values at the attachment region of the masticatory muscle but with the opposite direction of the reaction from when the muscle force is acted on the mandible. Although the mandible generally has higher displacement and von Mises stress than the maxilla, its mandibular corpus on the molar-loss side has a higher stress and displacement than the molar-presence side. Because the displacement and von Mises Stress was the highest on the lateral surface of mandibular corpus with molar loss, the stress level of the condyle on the molar-loss side is greater than that of the molar-presence side, which in turn caused the symphysis of the mandible to bend. In conclusion, the unilateral posterior bite collapse with molar loss under para-functional activities such as bruxism and clenching can affect the stress concentration on the condyle and mandibular corpus. It is therefore necessary to consider the biomechanical function of dento-skeleton under masticatory force while designing the occlusal scheme of restoration on alveolar bone with the posterior collapse.

  • PDF

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE EFFECTS OF ALVEOLAR BONE LOSS ON STRESS DISTRIBUTION IN POST-RECONSTRUCTED TEETH (치조골 흡수가 포오스트로 인한 치근내 응력에 미치는 영향에 관한 삼차원 유한요소법 분석)

  • Lee, Ky-Young;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.674-696
    • /
    • 1997
  • There're many cases that should be reconstructed with post and core when clinical crown is destructed. But this post and core restoration may cause damaging stress on the teeth. Previous finite element study was restricted to normal bone model relatively close to cemen-toenamel junction. Moreover, the test of a model with diminished bone support was rare. The purpose of this study is to test the effects of alveolar bone loss on the magnitude, stress distribution and displacement of post reconstructed teeth. In this study, it was assumed that the coronal portion of upper incisor was severely destructed. After conventional endodontic treatment, it was restored with post and core. The PFM restoration was made on it. This crown was cemented with ZPC. Alveolar bone was classified by 4 types of bone, such as normal, 2 mm, 4 mm, 6 mm bone, according to the bone loss. Meanwhile, the material of post are divided into 2 types of materials, such as gold, co-cr. Force was applied to two directions. One was fuctional maximum bite force (300 N) applied to the spot just lingual to the incisal edge with the angle of 45 degree to the long axis of the tooth, and the other one was horizontal force (300 N) applied to the labial surface. The results analyzed with three dimensional finite element method were as follows : 1. Stress was concentrated on the adjacent dentin of the post apex, one third portion of the post apex and the labial & lingual mid-portion of the root in all case. The stress of middle third of the root was apparently concentrated on the labial aspect. 2. The stress on adjacent dentin of the post apex and one third of the post apex increased as alveolar bone height moved apically. This increase was dramatic beyond 4 mm bone loss model. 3. The stress of the post apex was spreaded to the middle third of the post and greater than gold post in the case of metal post. 4. The displacement of the neck of post was the greatest in one of the post-cement interface and this increased as alveolar bone height moved apically. Besides the displacement of the metal post is slightly lower than one of the gold post.

  • PDF

Comparison of two computerized occlusal analysis systems for indicating occlusal contacts

  • Jeong, Min-Young;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.49-54
    • /
    • 2020
  • PURPOSE. The purpose of this study was to compare the performance of Accura to that of the T-scan for indicating occlusal contacts. MATERIALS AND METHODS. Twenty-four subjects were selected. Their maxillary dental casts were scanned with a model scanner. The Stereolithography files of the casts were positioned to align with the occlusal plane. Occlusal surfaces of every tooth were divided into three to six anatomic regions. T-scan and Accura recordings were made during two masticatory cycles. The T-scan and Accura images were captured at the maximum bite force and overlapped to the cast. Photographs of interocclusal records were used as the reference during overlap. The occlusal contacts were counted to compare the T-scan and Accura. McNemar's test was used for statistical significance and the corresponding P-values were calculated from a chi-square distribution with one degree of freedom. The accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of Accura were calculated relative to the T-scan values as a control. RESULTS. No statistical differences (P>.05) were found between the T-scan and Accura methods. The accuracy of Accura was 75.8%, sensitivity was 82.1%, specificity was 60.1%, PPV was 82.9%, and NPV was 60.1%. CONCLUSION. Accura could be another possible option as a computerized occlusal analysis system for indicating occlusal contacts at maximum intercuspation.

FINITE ELEMENT ANALYSIS OF THE INFLUENCE OF ESTHETIC POSTS ON INCISORS (심미 포스트가 전치에 미치는 응력과 변위에 관한 삼차원 유한요소법적 분석)

  • Kwon Tae-Hoon;Hwang Jung-Won;Kim Sung-Hun;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.582-595
    • /
    • 2003
  • Statement of problem : Most posts are metallic, but in response to the need for a post that possesses optical properties compatible with an all-ceramic crown. an esthetic post has been developed. Although there have been many studies about the esthetic post materials, 3-dimensional finite element studies about the stress distribution of them are in rare. Purpose : The purpose of this study is to investigate comparatively the distribution of stresses of the restored, endodontically treated maxillary incisors with the esthetic post materials and the displacement on the cement layer on simulated occlusal loading by using a 3-dimensional finite element analysis model. Material and method : Four 3-dimensional finite element models were constructed in a view of a maxillary central incisor, a post, a core, and the supporting tissues to investigate the stresses in various esthetic posts and cores and the displacement on the cement layer (Model 1 ; Cast gold post and core, Model 2 ; Glass fiber post with composite core, Model 3 ; Zirconia post with composite core. Model 4 ; Zirconia post with ceramic core). Force of 300N was applied to the incisal edge and the cingulum (centric stop point) with the angle of 135-degree to the long axis of the tooth. Results : 1. The stresses and displacement on the incisal edge were higher than on the cingulum 2. The stresses in dentin were the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. 3. The stresses in post and core were the highest in Model 4 (Zirconia post with ceramic core), and the second was Model 1, the third Model 3, and the lowest Model 2. 4. The displacement on the cement layer was the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. Conclusion : When a functional maximum bite force was applied, the distribution of stresses or the esthetic post and core materials and the displacement on the cement layer were a little different. It seems that restoring extensively damaged incisors with esthetic post and core materials would be decided according to the remaining tooth structure.

COMPARATIVE ELECTROMYOGRAPHIC ANALYSIS OF MASTICATORY MUSCLES BETWEEN BILATERAL AND UNILATERAL MASTICATORS

  • Na Sun-Hye;Kang Dong-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.577-589
    • /
    • 2002
  • There are several variations in normal mastication. In them, unilateral mastication is chewing, predominantly on a preferred side of the dentition and hardly on e non-preferred side. Continual unilateral mastication may alter the coordination of masticatory muscles. Although they studied about these EMG of masticatory muscles, there were no information about characteristics of masticatory muscle activity in unilateral mastication. Therefore, In this study, we investigated the activity of the masseter and anterior temporal muscles during rest, clenching in maximum intercuspation and gum chewing in habitually unilateral mastication group compared with normal group and tried to know effects of continual unilateral mastication on activity of masticatory muscles. The results of this study were as follows 1. In electromyographic activity during rest, in bilateral mastication group pattern of muscle activity of right and left side was symmetrical. But, in unilateral mastication group, records of anterior part of temporal muscle was higher than that of bilateral mastication group (p<.01) and patterns of muscle activity of right and left side in both muscle were asymmetrical.(p<.05) 2. In electromyographic activity during clenching in maximum intercuspation, records of superficial part of masseter muscle were higher than anterior part of temporal muscle in both group. Muscle activity of temporal muscle in unilateral mastication group was a little higher han bilateral mastication group and asymmetry of activity pattern in temporal and masseter muscle was shown but these differences were not statistically significant. (p<.05) 3. In electromyographic activity during gum chewing, temporal muscle was activated earlier than masseter muscle and maximum bite force is derived from masseter muscle in both group. In unilateral mastication group, electromyographic activity of masseter and temporal muscle of preferred chewing side, regardless of right or left side chewing, was higher than that of bilateral mastication group and especially, difference in masseter muscle was statistically significant. (p<.01) Based on the above results, our study suggested that recording of masticatory muscle activity will be helpful in the effective diagnosis and treatment of some types of the parafunctional habits.