• 제목/요약/키워드: bisulfite sequencing

검색결과 33건 처리시간 0.018초

산발성 위암에서 Microsatellite Instability 빈도와 hMLH1 촉진자부위 메칠화 (Microsatellite Instability and Promoter Methylation of hMLH1 in Sporadic Gastric Carcinoma)

  • 김희철;노선애;육정환;오성태;김병식;유창식;김진천
    • Journal of Gastric Cancer
    • /
    • 제3권1호
    • /
    • pp.50-55
    • /
    • 2003
  • Background: An aberrant function of the mismatch repair system has been reported to underlie carcinogenesis in several tumors, including colorectal and gastric carcinomas, and to induce the typical genotype of microsatellite instability (MSI). Purpose: We aimed to determine the frequency of MSI in early-onset sporadic gastric carcinoma and elucidate the role of promoter methylation in hMLH1 as the mechanism of MSI. Materials and Methods: Thirty-six early-onset sporadic gastric carcinomas were analyzed to determine the status of MSI and the frequency of methylation of the promoter region in hMLH1. MSI was determined using five markers recommended by NCI: MSI-H (high), MSI-L (low), and MSS (Microsatellite stable). Methylation specific PCR (MSP) and direct automated genomic sequencing analysis with DNA modified by sodium bisulfite have been performed to confirm promoter region methylation. All the data were analyzed regarding characteristics of molecular changes, and clinicopathologic variables. Results: The microsatellite status was determined as MSI-H in five cases ($13.8\%$), MSI-L in 13 cases ($36.1\%$), and MSS in 18 cases ($50.0\%$). hMLH1 was methylated in seven cases ($19.4\%$). In all cases of MSI-H, promoter of hMLH1 was methylated, and in two of the 13 cases of MSI-L, hMLH1 promoter methylation was identified. Methylation was not found in any cases of MSS. Promoter methylation in hMLH1 was significantly correlated with MSI status (P<0.001). We could not find any relationship between MSI and clinicopathologic parameters. Conclusion: These results suggest that an abnormal function of the mismatch repair system may be associated with gastric carcinogenesis in more than $10\%$ of early-onset gastric carcinomas and MSI appeared to be closely related to the promoter methylation in hMLH1.

  • PDF

돼지 체세포 복제란 초기발달 과정 중 Dnmt1o 상류 영역의 다이내믹한 DNA 메틸화 변화 (Dynamic DNA Methylation Change of Dnmt1o 5'-Terminal Region during Preimplantation Development of Cloned Pig)

  • 고응규;김성우;조상래;도윤정;김재환;김상우;김현;박재홍;박수봉
    • Reproductive and Developmental Biology
    • /
    • 제36권1호
    • /
    • pp.7-12
    • /
    • 2012
  • DNA methyltransferase 1 (Dnmt1) gene contains three different isoform transcripts, Dnmt1s, Dnmt1o, and Dnmt1p, are produced by alternative usage of multiple first exons. Dnmt1o is specific to oocytes and preimplantation embryos, whereas Dnmt1s is expressed in somatic cells. Here we determined that porcine Dnmt1o gene had differentially methylated regions (DMRs) in 5'-flanking region, while those were not found in the Dnmt1s promoter region. The methylation patterns of the porcine Dnmt1o/Dnmt1s DMRs were investigated using bisulfite sequencing and pyrosequencing analysis through all preimplantation stages from one cell to blastocyst stage in in vivo or somatic cell nuclear transfer (SCNT). The Dnmt1o DMRs contained 8 CpG sites, which located in -640 bp to -30 bp upstream region from transcription start site of the Dnmt1o gene. The methylation status of 5 CpGs within the Dnmt1o DMRs were distinctively different at each stage from one-cell to blastocyst stage in the $in$ $vivo$ or SCNT, respectively. 55.62% methylation degree of the Dnmt1o DMRs in the $in$ $vivo$ was increased up to 84.38% in the SCNT embryo, moreover, $de$ $novo$ methylation and demethylation occurred during development of porcine embryos from the one-cell stage to the blastocyst stage. However, the DNA methylation states at CpG sites in the Dnmt1s promoter regions were hypomethylated, and dramatically not changed through one-cell to blastocyst stage in the $in$ $vivo$ or SCNT embryos. In the present study, we demonstrated that the DMRs in the promoter region of the porcine Dnmt1o was well conserved, contributing to establishment and maintenance of genome-wide patterns of DNA methylation in early embryonic development.

Correlation analyses of CpG island methylation of cluster of differentiation 4 protein with gene expression and T lymphocyte subpopulation traits

  • Zhao, Xueyan;Wang, Yanping;Guo, Jianfeng;Wang, Jiying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1141-1149
    • /
    • 2018
  • Objective: Cluster of differentiation 4 protein (CD4) gene is an important immune related gene which plays a significant role in T cell development and host resistance during viral infection. Methods: In order to unravel the relationship of CpG island methylation level of CD4 gene with its gene expression and T lymphocyte subpopulation traits, we used one typical Chinese indigenous breed (Dapulian, DP) and one commercial breed (Landrace), then predicted the CpG island of CD4 gene, determined the methylation status of CpG sites by bisulfite sequencing polymerase chain reaction (BSP), and carried out the correlation analyses of methylation frequencies of CpG sites with mRNA expression and T lymphocyte subpopulation traits. Results: There was one CpG island predicted in the upstream -2 kb region and exon one of porcine CD4 gene, which located 333 bp upstream from the start site of gene and contained nine CpG sites. The correlation analysis results indicated that the methylation frequency of CpG_2 significantly correlated with CD4 mRNA expression in the DP and Landrace combined population, though it did not reach significance level in DP and Landrace separately. Additionally, 15 potential binding transcription factors (TFs) were predicted within the CpG island, and one of them (Jumonji) contained CpG_2 site, suggesting that it may influence the CD4 gene expression through the potential binding TFs. We also found methylation frequency of CpG_2 negatively correlated with T lymphocyte subpopulation traits CD4+CD8-CD3-, CD4-CD8+CD3- and CD4+/CD8+, and positively correlated with CD4-CD8+CD3+ and CD4+CD8+CD3+ (for all correlation, p<0.01) in DP and Landrace combined population. Thus, the CpG_2 was a critical methylation site for porcine CD4 gene expression and T lymphocyte subpopulation traits. Conclusion: We speculated that increased methylation frequency of CpG_2 may lead to the decreased expression of CD4, which may have some kind of influence on T lymphocyte subpopulation traits and the immunity of DP population.