• Title/Summary/Keyword: bis-acryl composite resin

Search Result 6, Processing Time 0.02 seconds

Effect of polymerization temperature on the mechanical properties of provisional prosthesis resins (중합 온도가 임시 보철용 수지의 기계적 성질에 미치는 영향)

  • Hong, Min-Ho;Ha, Jung-Yun;Kwon, Tae-Yub
    • Korean Journal of Dental Materials
    • /
    • v.44 no.4
    • /
    • pp.311-318
    • /
    • 2017
  • The purpose of this study was to examine the effects of the curing sequence and polymerization temperature on the flexural strength and microhardness of two provisional resins (Bis-acryl resin composite and polymethyl methacrylate (PMMA)). Polymerization was carried out under various conditions, in air at $25^{\circ}C$ (control) and in hot water (40, 50, 60, 70, and $80^{\circ}C$). The flexural strength test was conducted according to ISO-4049. The Knoop hardness was measured. For the Bis-acryl resin, the temperature up to $50^{\circ}C$ did not increase the flexural strength nor the hardness of the bis-acryl resin composite (p>0.05) but higher temperatures increased the strengths. For the PMMA resin, flexural strength increased with temperatures up to $70^{\circ}C$ and then decreased slightly. Bis-acryl resin composite had higher mechanical properties than the PMMA resin. The effect of heat was more pronounced in the bis-acryl resin composite than in the PMMA resin (p<0.05).

The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

  • Kamble, Vaibhav Deorao;Parkhedkar, Rambhau D.;Mowade, Tushar Krishnarao
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • PURPOSE. The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS. Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS. For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION. Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications. On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins.

Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins

  • Lim, Na-Kyung;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.322-328
    • /
    • 2020
  • PURPOSE. This study evaluated the shear bond strength between 3D printed provisional resin and conventional provisional resin depending on type of conventional provisional resin and different surface treatments of 3D printed resin. MATERIALS AND METHODS. Ninety-six disc-shaped specimens (Ø14 mm × 20 mm thickness) were printed with resin for 3D printing (Nextdent C&B, Vertex-Dental B. V., Soesterberg, Netherlands). After post-processing, the specimens were randomly divided into 8 groups (n=12) according to two types of conventional repair resin (methylmethacrylate and bis-acryl composite) and four different surface treatments: no additional treatment, air abrasion, soaking in methylmethacrylate (MMA) monomer, and soaking in MMA monomer after air abrasion. After surface treatment, each repair resin was bonded in cylindrical shape using a silicone mold. Specimens were stored in 37℃ distilled water for 24 hours. The shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were analyzed by scanning electron microscope. Statistical analysis was done using one-way ANOVA test and Kruskal-Wallis test (α=.05). RESULTS. The group repaired with bis-acryl composite without additional surface treatment showed the highest mean shear bond strength. It was significantly higher than all four groups repaired with methylmethacrylate (P<.05). Additional surface treatments, neither mechanical nor chemical, increased the shear bond strength within methylmethacrylate groups and bis-acryl composite groups (P>.05). Failure mode analysis showed that cohesive failure was most frequent in both methylmethacrylate and bis-acryl composite groups. CONCLUSION. Our results suggest that when repairing 3D printed provisional restoration with conventional provisional resin, repair with bis-acryl composite without additional surface treatment is recommended.

Effect of delayed time, surface treatment, and repair material on shear bond strength of repaired bis-acryl composite resin (수리된 비스 아크릴 복합 레진의 전단결합강도에 대한 지연시간, 표면처리, 수리 재료의 영향)

  • Park, Ji-su;Lee, Jae-In
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the effect of delayed time, surface treatment, and repair materials on repair of bis-acryl composite resin through comparison of shear bond strength and to evaluate the utility of bis-acryl composite resin repair using polymethyl methacrylate resin. Materials and Methods: A total of 90 bis-acryl composite resin specimens were fabricated and classified into 9 test groups, each of 10 pieces according to delayed time, surface treatment and repair material. The shear bond strength of each specimen was measured using a universal testing machine immediately after fabrication and analyzed using a statistical analysis program (IBM SPSS statistics 20). After the shear bond strength measurement, the fracture surface of the specimen was observed. Results: The highest shear bond strength ($17.54{\pm}3.14MPa$) was observed in the experimental group bonded immediately with a light-curing flowable composite resin using a bonding agent. Conclusion: When repairing bis-acryl composite resin, it is necessary to consider whether to remake according to the delayed time. For effective repair, it is desirable to consider appropriate materials and surface treatment methods according to the site or purpose of use.

Comparison of fracture strength, surface hardness, and color stain of conventionally fabricated, 3D printed, and CAD-CAM milled interim prosthodontic materials after thermocycling

  • Mesut Yildirim;Filiz Aykent;Mahmut Sertac Ozdogan
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.115-125
    • /
    • 2024
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture resistance, surface hardness, and color stain of 3D printed, CAD-CAM milled, and conventional interim materials. MATERIALS AND METHODS. A total of 80 specimens were fabricated from auto polymerizing polymethyl methacrylate (PMMA), bis-acryl composite resin, CAD-CAM polymethyl methacrylate resin (milled), and 3D printed composite resin (printed) (n = 20). Forty of them were crown-shaped, on which fracture strength test was performed (n = 10). The others were disc-shaped specimens (10 mm × 2 mm) and divided into two groups for surface hardness and color stainability tests before and after thermal cycling in coffee solution (n = 10). Color parameters were measured with a spectrophotometer before and after each storage period, and color differences (CIEDE2000 [DE00]) were calculated. The distribution of variables was measured with the Kolmogorov Smirnov test, and one-way analysis of variance (ANOVA), Tukey HSD, Kruskal-Wallis, Mann-Whitney U tests were used in the analysis of quantitative independent data. Paired sample t-test was used in the analysis of dependent quantitative data (P < .05). RESULTS. The highest crown fracture resistance values were determined for the 3D printed composite resin (P < .05), and the lowest were observed in the bis-acryl composite resin (P < .05). Before and after thermal cycling, increase in mean hardness values were observed only in 3D printed composite resin (P < .05) and the highest ΔE00 value were observed in PMMA resin for all materials (P < .05). CONCLUSION. 3D printing and CAD-CAM milled interim materials showed better fracture strength. After the coffee thermal cycle, the highest surface hardness value was again found in 3D printing and CAD-CAM milled interim samples and the color change of the bis-acryl resin-based samples and the additive production technique was higher than the PMMA resin and CAD-CAM milled resin samples.

Comparative study of surface modification on bond strength of polyetherketoneketone adhesively bonded to resins for temporary restoration (Polyetherketoneketone의 표면처리 방법에 따른 임시 보철물 제작용 레진과의 결합 강도 비교 연구)

  • Hong, Mun Gi;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Purpose: The purpose was to compare shear bond strength (SBS) of three types of resin for temporary restoration to polyetherketoneketone (PEKK) depending on surface modification. Materials and Methods: Sixty disks made from PEKK were air-abraded with 110 ㎛ alumina particles (Cobra, Renfert GmbH, Hilzinge, Germany) and thirty specimens were divided into two groups each: PEKK without Visio.link (Bredent, Senden, Germany)(U) and with Visio.link (P). Resins for temporary restoration (polymethylmethacrylate; PMMA, polyethylmethacrylate; PEMA, bis-acryl composite resin) in the shape of a square with one side 3.2 mm were bonded to PEKK twenty respectively and classified into six groups (UM, UE, UC, PM, PE and PC). All specimens were stored in distilled water at 37℃ for 24 hours. SBS of each group was measured at a crosshead speed of 2 mm/min in universal testing machine. SBS was compared using one-way ANOVA and a Tukey HSD test (P = 0.05). Results: Group UM and group UE showed a significant difference in SBS with group UC (P < 0.05). Group PC showed a significant increase in SBS than group UC (P < 0.05). Conclusion: It is recommended to apply Visio.link to PEKK for adhering bis-acrylic composite resin, but not for PMMA and PEMA in clinical practice.