• 제목/요약/키워드: biped gait

검색결과 64건 처리시간 0.021초

푸리에 급수를 이용한 이족보행로봇의 보행 궤적 해석해 생성 (Analytic Solution for Stable Bipedal Walking Trajectory Generation Using Fourier Series)

  • 박일우;백주훈
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1216-1222
    • /
    • 2009
  • This article describes a simple method for generating the walking trajectory for the biped humanoid robot. The method used a simple inverted model instead of complex multi-mass model and a reasonable explanation for the model simplification is included. The problem of gait trajectory generation is to find the solution from the desired ZMP trajectory to CoG trajectory. This article presents the analytic solution for the bipedal gait generation on the bases of ZMP trajectory. The presented ZMP trajectory has Fourier series form, which has finite or infinite summation of sine and cosine functions, and ZMP trajectory can be designed by calculating the coefficients. From the designed ZMP trajectory, this article focuses on how to find the CoG trajectory with analytical way from the simplified inverted pendulum model. Time segmentation based approach is adopted for generating the trajectories. The coefficients of the function should be designed to be continuous between the segments, and the solution is found by calculating the coefficients with this connectivity conditions. This article also has the proof and the condition of solution existence.

이족보행로봇의 비충격 걸음새를 위한 제어에 관한 연구 (A study on the control for impactless gait of biped robot)

  • 박인규;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.536-539
    • /
    • 1997
  • This paper presents a three dimensional modeling and a trajectory generation for minimized impact walking of the biped robot. Inverse dynamic analysis and forward dynamic analysis are performed considering impact force between the foot and ground for determining the actuator capacity and for simulating the proposed biped walking robot. Double support phase walking is considered for close to human's with adding the kinematic constraints on the one of the single support phase.

  • PDF

유전 알고리즘 기반의 이족보행로봇 시스템에 관한 연구 (A Study on Genetic Algorithm-based Biped Robot System)

  • 공정식;한경수;김진걸
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.135-143
    • /
    • 2003
  • This paper presents the impact minimization of a biped robot by using genetic algorithm. In case we want to accomplish the designed plan under the special environments, a robot will be required to have walking capability and patterns with legs, which are in a similar manner as the gaits of insects, dogs and human beings. In order to walk more effectively, studies of mobile robot movement are needed. To generate optimal motion for a biped robot, we employ genetic algorithm. Genetic algorithm is searching for technology that can look for solution from the whole district, and it is possible to search optimal solution from a fitness function that needs not to solve differential equation. In this paper, we generate trajectories of gait and trunk motion by using genetic algorithm. Using genetic algorithm not only on gait trajectory but also on trunk motion trajectory, we can obtain the smoothly stable motion of robot that has the least impact during the walk. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

이족보행로보트 IWR을 위한 적응걸음새 알고리즘 개발 (Development of adaptive gait algorithm for IWR biped robot)

  • 임선호;김진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.113-118
    • /
    • 1993
  • This paper represents mechanical compliance & ZMP(Zero Moment Point) control algorithm for IWR(Inha Walking Robot) system. In case of walking in different environments, a biped walking robot must vary its gait(walking period or step length, etc.) according to the environments. However, most of biped walking robots do not have the capability to change their gaits or need more complex control algorithm, because ZMP cannot be defined in their control algorithm. Therefore new linear type with balancing joint is proposed which is used as an aid in balancing & ZMP control itself. In IWR system, ZMP can be defined by solving differential equations and it does not need to be predefined ZMP trajectory. Furthermore we can input the desired ZMP position. In parallel with the development, we also considered a mechanical compliance for reducing the inverse kinematics, dynamics and the control complexity. It will figure out some powerful adaptation with 3D irregular terrains.

  • PDF

9 링크 이족로봇의 부드러운 걸음새 경로 계획 (A Smoothed Gait Trajectory Planning of a 9-link Biped Robot)

  • 김철하;유성진;최윤호;박진배;곽기석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.424-426
    • /
    • 2005
  • We propose an analytic trajectory planning method using a wavelet neural network (WNN) for a natural and stable locomotion of the 9-link biped robot. We design a appropriate locomotion, which have a kick-action, by means of a ballastic walking model condition. In this paper, a WNN is used to interpolate the trajectory planed by the analytic method. Finally, we show the proposed trajectories through the computer simulation.

  • PDF

이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현 (Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot)

  • 임동철;국태용
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

Optimal Design for Flexible Passive Biped Walker Based on Chaotic Particle Swarm Optimization

  • Wu, Yao;Yao, Daojin;Xiao, Xiaohui
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2493-2503
    • /
    • 2018
  • Passive dynamic walking exhibits humanoid and energy efficient gaits. However, optimal design of passive walker at multi-variable level is not well studied yet. This paper presents a Chaotic Particle Swarm Optimization (CPSO) algorithm and applies it to the optimal design of flexible passive walker. Hip torsional stiffness and damping were incorporated into flexible biped walker, to imitate passive elastic mechanisms utilized in human locomotion. Hybrid dynamics were developed to model passive walking, and period-one gait was gained. The parameters global searching scopes were gained after investigating the influences of structural parameters on passive gait. CPSO were utilized to optimize the flexible passive walker. To improve the performance of PSO, multi-scroll Jerk chaotic system was used to generate pseudorandom sequences, and chaotic disturbance would be triggered if the swarm is trapped into local optimum. The effectiveness of CPSO is verified by comparisons with standard PSO and two typical chaotic PSO methods. Numerical simulations show that better fitness value of optimal design could be gained by CPSO presented. The proposed CPSO would be useful to design biped robot prototype.

이족 보행 로보트의 운동 궤적 계획 및 동적 시뮬레이션에 관한 연구 (A study on the motion trajectory planning and dynamic simulation of biped walking robot)

  • 김창부;김웅태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.959-964
    • /
    • 1992
  • This study treats the method for kinematic modeling of the biped walking robot, for synthesizing various gait trajectories, and for calculating adequate values of the joint torque inside the stable region. To synthesize various and anthropomorphic walking easily, the gait trajectory is specified by a set of ten walking prameters, and the trunk motion equation is derived by the zero moment point and the gait trajectory. By distributing ground reaction force and moment reduced at the zero moment point to the both feet, the joint torque equation can be derived readily, and according to this equation, the joint torque to stable walking can be computed.

  • PDF

이족 휴머노이드 로봇의 유연한 보행을 위한 학습기반 뉴로-퍼지시스템의 응용 (Use of Learning Based Neuro-fuzzy System for Flexible Walking of Biped Humanoid Robot)

  • 김동원;강태구;황상현;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년 학술대회 논문집 정보 및 제어부문
    • /
    • pp.539-541
    • /
    • 2006
  • Biped locomotion is a popular research area in robotics due to the high adaptability of a walking robot in an unstructured environment. When attempting to automate the motion planning process for a biped walking robot, one of the main issues is assurance of dynamic stability of motion. This can be categorized into three general groups: body stability, body path stability, and gait stability. A zero moment point (ZMP), a point where the total forces and moments acting on the robot are zero, is usually employed as a basic component for dynamically stable motion. In this rarer, learning based neuro-fuzzy systems have been developed and applied to model ZMP trajectory of a biped walking robot. As a result, we can provide more improved insight into physical walking mechanisms.

  • PDF

이족 보행로봇의 3차원 모의실험기 개발 (Development of 3-Dimensional Simulator for a Biped Robot)

  • 노경곤;김진걸;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2438-2440
    • /
    • 2004
  • This study is concerned with development of 3-Dimensional simulator of a biped robot that has a prismatic balancing weight or a revolute balancing weight. The dynamic stability equation of a biped robot which have a prismatic balancing weight is conditional linear but a walking robot's stability equation with a revolute balancing weight is nonlinear. To get a stable gait of a biped robot, stabilization equations with ZMP (Zero Moment Point) are modeled as non-homogeneous second order differential equations for each balancing weight type. A trajectory of balancing weight can be directly calculated with the FDM (Finite Difference Method) solution of the linearized differential equation. In this paper, the 3-Dimensional graphic simulator is programmed to get and calculate the desired ZMP and the actual ZMP. Walking of 4 steps was simulated and verified. This balancing system will be applied to a biped humanoid robot, which consist Begs and upper body, at future work.

  • PDF