• Title/Summary/Keyword: biosynthetic pathway

Search Result 227, Processing Time 0.024 seconds

Anti-stress effects of Gastrodia elata on catecholamine pathway in rat

  • Ri, Qrian-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10b
    • /
    • pp.17-17
    • /
    • 2003
  • Enzymes involved in catecholamine synthesis are present in the highest concentration in the adrenal medulla, however they were found also in other, mainly nervous tissues. Increased transcription of genes for catecholamine biosynthetic enzymes is an important mechanism to increase the capacity for epineprine/norepinephrine biosynthesis with stress. Gastrodia elata(Chinese name: Tienma), are very important Chinese herbal medicines used for the medical treatment of headaches, migraine, dizziness, epilepsy, rheumatism, neuralgia, paralysis and other neuralgic and nervous disorders. Immobilize stressed rat markedly increased tyrosine hydroxylase (TH) mRNA and dopamine-${\beta}$-hydroxylase (DBH) mRNA transcriptior level more than control group. But treated Gastrodia elata extracts in immobilized stressed rat slightly increased TH mRNA and DBH mRNA transcription level more than normal group. In addition, we are obtained identical results in PC12 cell line. Decrease of transcription level of TH mRNA and DBH mRNA is indicating that Gastrodia elata have a anti-stress effects which decrease the transcription level of TH and DBH mRNA on catecholamine biosynthesis pathway.

  • PDF

Biosynthesis of Indole-3-acetic Acid in Ginseng Growth-promoting Pseudomonas fluorescens KGPP 207

  • Leonid, N.Ten;Lee, Mee-Kyoung;Lee, Mi Ja;Park, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.269-272
    • /
    • 2000
  • The ginseng growth-promoting bacterium Pseudomonas fluorescens KGPP 207 synthesized indole-3- acetic acid (IAA) from L-tryptophan, indole-3-pyruvic acid (IPyA), and indole-3-acetaldehyde (IAAld), but not from indole-3-acetamide (lAM) and other intermediates of various IAA biosynthetic pathways in the experiment with indole compound supplemented cell suspensions. TLC, HPLC, and GC-MS analyses revealed the presence of IPyA, indole-3-ethanol, indole-3-lactic acid and its methyl ester, IAA and its methyl, and ethyl esters in the culture supernatant of the bacterium. IAAld was detected in the supernatant using sodium bisulfite and TLC. The results indicate that unlike gall-forming bacteria which can synthesize IAA by lAM, the indole-3-pyruvic acid pathway is the route for IAA biosynthesis in this beneficial strain of P. fluorescens.

  • PDF

Elicitor-induced Phenylalanine-Ammonia Lyase, Cinnamic Acid 4-Hydroxylase and $rho-Coumaroyl$ transferase Activity in Ephedra Distachya Cultures

  • Song, Kyung-Sik;Yutaka Ebizuka
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.219-222
    • /
    • 1996
  • Ephedra olistachya cultures have been known to accumulate $rho-coumaroylamino$ acids by elicitor treatment. Based on their chemical structures, the biosynthetic pathway of$rho-coumaroylamino$acids was postulated and phenylalanine ammonia-lyase (PAL), cinnamic acid 4-hydroxylase (4-CH) and p-coumaroyl CoA: D-Ala p-coumaroyltransferase ($rho-CT$) were supposed to be involved in the pathway. The time course inductions of these enzymes were investigated after treatment of yeast extract, yeast-derived mannan glycopeptide and D-Ala. They were detectable at only 4 hours and reached to their maximum level at 9 hours after onset of elicitor treatment. The activities of PAL and 4-CH were almost disappeared within 24 hours, however, that of $rho-CT$was remained up to 48 hours irrespective of the kind of elicitors. $rho-CT$ showed substrate specificity to D-Ala at crude enzyme extract level.

  • PDF

Flavor of Fermented Black Tea with Tea Fungus (Tea Fungus 발효홍차의 향기)

  • 최경호;최미애;김정옥
    • Journal of Life Science
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 1997
  • The fermented black tea with tea fungus (FBTF) was prepared by culturing tea fungus biomass in black tea with 10% sucrose (BT) at 30$\circ$ for 14 days. The flavor quality of FBTF was investigated by sensory and chemical analysis, and the results were compared with BT. The data of sensory analysis indicated that fruity, wine-like, sharp-pungent, and vinegar-like flavor notes were increase, while earthy note was reduced during fermentation. GC-MS analysis of volatile compounds collected from FBTF and BT by Tenax trap showed that linalool, liinalool oxide other flavor compounds known as black tea flavor compounds were disappeared. Some major flavor compounds produced during fermentation were acetic acid, ethanol, limonene, $\alpha$-terpineol, and these volatiles may be attributed to the flavor of characteristic FBTF. Biosynthetic pathway for the formation of limonene and $\alpha$-terpineol are proposed through mevalonic acid pathway using acetic acid as precusor and/or through transformation of linalool and linalool oxide.

  • PDF

Anti-stress effects of Gastrodia elata on catecholamine pathway in rat

  • Ri, Qrian-Young
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2003.10a
    • /
    • pp.37-37
    • /
    • 2003
  • Enzymes involved in catecholamine synthesis are present in the highest concentration in the adrenal medulla, however they were found also in other, mainly nervous tissues. Increased transcription of genes for catecholamine biosynthetic enzymes is an important mechanism to increase the capacity for epineprine/norepinephrine biosynthesis with stress. Gastrodia elata(Chinese name: Tienma), are very important Chinese herbal medicines used for the medical treatment of headaches, migraine, dizziness, epilepsy, rheumatism, neuralgia, paralysis and other neuralgic and nervous disorders. Immobilize stressed rat markedly increased tyrosine hydroxylase (TH) mRNA and dopamine-$\beta$-hydroxylase (DBH) mRNA transcription level more than control group. But treated Gastrodia elata extracts in immobilized stressed rat slightly increased TH mRNA and DBH mRNA transcription level more than normal group. In addition, we are obtained identical results in PC12 cell line. Decrease of transcription level of TH mRNA and DBH mRNA is indicating that Gastrodia elata have a anti-stress effects which decrease the transcription level of TH and DBH mRNA on catecholamine biosynthesis pathway.

  • PDF

Proteomic Analysis of O-GlcNAc Modifications Derived from Streptozotocin and Glucosamine Induced β-cell Apoptosis

  • Park, Jung-Eun;Kwon, Hye-Jin;Kang, Yup;Kim, Young-Soo
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1058-1068
    • /
    • 2007
  • The post-translational modifications of Ser and Thr residues by O-linked $\beta$-N-acetylglucosamine (O-GlcNAc), i.e., O-GlcNAcylation, is considered a key means of regulating signaling, in a manner analogous to protein phosphorylation. Furthermore, it has been suggested that the increased flux of glucose through the hexosamine biosynthetic pathway (HBP) stimulates O-GlcNAcylation, and that this may be responsible for many of the manifestations of type 2 diabetes mellitus. To determine whether excessive O-GlcNAcylation of target proteins results in pancreatic $\beta$ cell dysfunction, we increased nucleocytoplasmic protein O-GlcNAcylation levels in $\beta$ cells by exposing them to streptozotocin and/or glucosamine. Streptozotocin and glucosamine co-treatment increased O-GlcNAcylated proteomic patterns as assessed by immunoblotting, and these increases in nuclear and cytoplasmic protein O-GlcNAcylations were accompanied by impaired insulin secretion and enhanced apoptosis in pancreatic $\beta$ cells. This observed $\beta$cell dysfunction prompted us to examine Akt and Bcl-2 family member proteins to determine which proteins are O-GlcNAcylated under conditions of high HBP throughput, and how these proteins are associated with $\beta$ cell apoptosis. Eventually, we identified ten new O-GlcNAcylated proteins that were expressed during $\beta$ cell apoptosis, and analyzed the functional implications of these proteins in relation to pancreatic $\beta$ cell dysfunction.

Saponarin content and biosynthesis-related gene expression in young barley (Hordeum vulgare L.) seedlings

  • Lee, HanGyeol;Woo, So-Yeun;Ra, Ji-Eun;Lee, Kwang-Sik;Seo, Woo Duck;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Flavonoids are widely distributed secondary metabolites in plants that have a variety biological functions, as well as beneficial biological and pharmacological activities. In barley (Hordeum vulgare L.), for example, high levels of saponarin accumulate during primary leaf development. However, the effect of saponarin biosynthetic pathway genes on the accumulation of saponarin in barley is poorly understood. Accordingly, the aim of the present study was to examine the saponarin contents and expression levels of saponarin biosynthetic pathway genes [chalcone synthase (CHS), chalcone isomerase (CHI), and UDP-Glc:isovitexin 7-O-glucosyltransferase (OGT)] during early seedling developmental and under several abiotic stress conditions. Interestingly, the upregulation of HvCHS, HvCHI, and HvOGT during early development was associated with saponarin accumulation during later stages. In addition, exposure to abiotic stress conditions (e.g., light/dark transition, drought, and low or high temperature) significantly affected the expression of HvCHS and HvCHI but failed to affect either HvOGT expression or saponarin accumulation. These findings suggested that the expression of HvOGT, which encodes an enzyme that catalyzes the final step of saponarin biosynthesis, is required for saponarin accumulation. Taken together, the results of the present study provide a basis for metabolic engineering in barley plants, especially in regards to enhancing the contents of useful secondary metabolites, such as saponarin.

Eicosapentaenoic Acid (EPA) Biosynthetic Gene Cluster of Shewanella oneidensis MR-1: Cloning, Heterologous Expression, and Effects of Temperature and Glucose on the Production of EPA in Escherichia coli

  • Lee, Su-Jin;Jeong, Young-Su;Kim, Dong-Uk;Seo, Jeong-Woo;Hur, Byung-Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.510-515
    • /
    • 2006
  • The putative EPA synthesis gene cluster was mined from the entire genome sequence of Shewanella oneidensis MR-1. The gene cluster encodes a PKS-like pathway that consists of six open reading frames (ORFs): ORFSO1602 (multi-domain beta-ketoacyl synthase, KS-MAT-4ACPs-KR), ORFSO1600 (acyl transferase, AT), ORFSO1599 (multi-domain beta-ketoacyl synthase, KS-CLF-DH-DH), ORFSO1597 (enoyl reductase, ER), ORFSO1604 (phosphopentetheine transferase, PPT), and ORFSO1603 (transcriptional regulator). In order to prove involvement of the PKS-like machinery in EPA synthesis, a 20.195-kb DNA fragment containing the genes was amplified from S. oneidensis MR-1 by the long-PCR method. Its identity was confirmed by the methods of restriction enzyme site mapping and nested PCR of internal genes orfSO1597 and orfSO1604. The DNA fragment was cloned into Escherichia coli using cosmid vector SuperCos1 to form pCosEPA. Synthesis of EPA was observed in four E. coli clones harboring pCosEPA, of which the maximum yield was 0.689% of the total fatty acids in a clone designated 9704-23. The production yield of EPA in the E. coli clone was affected by cultivation temperature, showing maximum yield at $20^{\circ}C$ and no production at $30^{\circ}C$ or higher. In addition, production yield was inversely proportional to glucose concentration of the cultivation medium. From the above results, it was concluded that the PKS-like modules catalyze the synthesis of EPA. The synthetic process appears to be subject to regulatory mechanisms triggered by various environmental factors. This most likely occurs via the control of gene expression, protein stability, or enzyme activity.

Correlation of saponarin content with biosynthesis-related gene expression in hulled and hulless barley (Hordeum vulgare L.) cultivars

  • Lee, HanGyeol;Park, Jae-Hyeok;Yoon, A Mi;Kim, Young-Cheon;Park, Chul Soo;Yang, Ji Yeong;Woo, So-Yeun;Seo, Woo Duck;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.12-17
    • /
    • 2021
  • Saponarin found in young barley sprouts has a variety of beneficial biological and pharmacological properties, including antioxidant, hypoglycemic, antimicrobial, and hepatoprotective activities. Our previous work demonstrated that saponarin content was correlated with the expression levels of three biosynthetic pathway genes [chalcone synthase (HvCHS1), chalcone isomerase (HvCHI), and UDP-Glc:isovitexin 7-O-glucosyltransferase (HvOGT1)] in young barley seedlings under various abiotic stress conditions. In this study, we investigated the saponarin content and expression levels of three saponarin biosynthetic pathway genes in hulled and hulless domestic barley cultivars. In the early developmental stages, some hulled barley cultivars (Kunalbori1 and Heukdahyang) had much higher saponarin contents than did the hulless barley cultivars. An RNA expression analysis showed that in most barley cultivars, decreased saponarin content correlated with reduced expression of HvCHS1 and HvCHI, but not HvOGT1. Heat map analysis revealed both specific increases in HvCHS1 expression in certain hulled and hulless barley cultivars, as well as general changes that occurred during the different developmental stages of each barley cultivar. In summary, our results provide a molecular genetic basis for the metabolic engineering of barley plants to enhance their saponarin content.

Strain Improvement and Genetic Characterization of Tautomycetin Biosynthesis in Streptomyces spp.

  • Choi, Si-Sun;Kim, Myung-Gun;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.420-422
    • /
    • 2005
  • TMC (Tautomycetin) is a liner polyketide immunosuppressive antifungal compound produced by Streptomyces spp. Inhibition of T cell proliferation with TMC was observed highly efficient at 100-fold lower than those needed to achieve maximal inhibition with cyclosporin A. To elucidate the biosynthetic pathway of TMC, a genomic DNA library was constructed using a E. coil-Streptomyces shuttle cosmid vector, pOJ446. The DNA libraries were screened by colony blot hybridization using several polyketide ${\beta}-ketosynthase$ (KS) probes amplified from TMC-producing Streptomyces genomic DNA using polymerase chain reaction (PCR), of which the degenerate primers were designed based on the highly conserved sequences present in KS domains of various type I polyketide synthase genes in Streptomyces species. This library construction and screening approach led to the isolation of several positive cosmid clones representing type I polyketide biosynthetic gene clusters. In addition, a Streptomyces regulatory gene called afsR2 (a global regulatory gene stimulating antibiotic production in both S. coelicolor and S. lividans) was successfully integrated into the TMC-producing Streptomyces chromosome via E. coil-Streptomyces heterologous conjugation mehtod. The more detailed results of production improvement and genetic characterization of TMC-producing Streptomyces spp. will be discussed.

  • PDF