• Title/Summary/Keyword: bioresorbable

Search Result 30, Processing Time 0.028 seconds

Additional fixation using a metal plate with bioresorbable screws and wires for robinson type 2B clavicle fracture

  • Shin, Woo Jin;Chung, Young Woo;Kim, Seon Do;An, Ki-Yong
    • Clinics in Shoulder and Elbow
    • /
    • v.23 no.4
    • /
    • pp.198-202
    • /
    • 2020
  • Simple clavicle fractures can achieve satisfactory results through conservative treatment, and the less frequency of nonunion. Non-union or malunion can occur in displaced clavicle fractures or comminuted shaft fractures. Treatment of displaced comminuted clavicle shaft fractures is performed by holding together the free fragments with interfragmentary screws or wires and fixing them to the clavicle with a plate. Therefore, we performed interfragmentary fixation using open reduction and internal fixation with bioresorbable screws (Mg-Ca alloy, Resomet bioresorbable bone screw; U&I Corp.) and bioresorbable wires (Mg-Ca alloy, Resomet bioresorbable K-wire and pin, U&I Corp.) for displaced comminuted clavicle fractures (Robinson type 2B) and additionally used a metal plate. We expected decreased irritation and infection due to absorption after surgery. We report four cases that were treated in this way.

THE PROGNOSIS OF FIXATION OF MANDIBULAR FRACTURES WITH BIODEGRADABLE PLATES AND SCREWS (생체 흡수성 고정판을 이용한 하악골 골절치료의 예후)

  • Choi, Jin-Ho;Kim, Ju-Rok;Ha, Tae-Jin;Yu, Jang-Bae;Kim, Il-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • The efficacy of bioresorbable fixation has recently been described in the osseosynthesis of the oral & maxillofacial region. However, a liitle data exist regarding the use of biodegradable plates and screws for the internal fixation of human mandible fractures. The purpose of this study is to analyze and compare the treatment of mandibular fractures by using a bioresorbable fixation system with conventional titanium system in human mandible fractures. eighteen patients constituted the bioresorbable fixation group and twenty-five patients constituted the titanium fixation group. Both groups underwent open reduction and internal fixation by use of a bioresorbable system or a titanium fixation system. Panoramic radiograph were obtained preoperatively, immediately postoperatively after reduction, at 6 months and at 12 months postoperatively. In the bioresorbable fixation group, complication(infection) occurred in 1 patient(5.6%) and was resolved by incision & drainage, plate removal and antibiotics without untoward sequelae. 2 patients(8.0%) experienced complications in the titanium fixation group and were treated using conservative treatment. There was no statistical difference in complication rates between two groups. Our data supported the use of bioresorbale plate fixation in mandibular fractures as a means of avoiding the potential and well documented problems with rigid titanium fixation systems. In conclusion, the bioresorbable fixation system provide a reliable and sufficient alternative to conventional titanium plate system.

Inorganic Materials and Process for Bioresorbable Electronics

  • Seo, Min-Ho;Jo, Seongbin;Koo, Jahyun
    • Journal of Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.46-56
    • /
    • 2020
  • This article highlights new opportunities of inorganic semiconductor materials for bio-implantable electronics, as a subset of 'transient' technology defined by an ability to physically dissolve, chemically degrade, or disintegrate in a controlled manner. Concepts of foundational materials for this area of technology with historical background start with the dissolution chemistry and reaction kinetics associated with hydrolysis of nanoscale silicon surface as a function of temperature and pH level. The following section covers biocompatibility of silicon, including related other semiconductor materials. Recent transient demonstrations of components and device levels for bioresorbable implantation enable the future direction of the transient electronics, as temporary implanters and other medical devices that provide important diagnosis and precisely personalized therapies. A final section outlines recent bioresorbable applications for sensing various biophysical parameters, monitoring electrophysiological activities, and delivering therapeutic signals in a programmed manner.

THE EFFECT OF THE BIORESORBABLE COLLAGEN MEMBRANE ON THE REGENERATION OF BONE DEFECT BY USING THE MIXTURE OF AUTOGRAFT AND XENOGRAFT BONE

  • Lee Jung-Min;Kim Yung-Soo;Kim Chang-Whe;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.325-341
    • /
    • 2003
  • Statement of problem: In cases where bony defects were present, guided bone regenerations have been performed to aid the placement of implants. Nowadays, the accepted concept is to isolate bone from soft tissue by using barrier membranes to allow room for generation of new bone. Nonresorbable membranes have been used extensively since the 1980's. However, this material has exhibited major shortcomings. To overcome these faults, efforts were made to develop resorbable membranes. Guided bone regenerations utilizing resorbable membranes were tried by a number of clinicians. $Bio-Gide^{(R)}$ is such a bioresorbable collagen that is easy to use and has shown fine clinical results. Purpose: The aim of this study was to evaluate the histological results of guided bone regenerations performed using resorbable collagen membrane($Bio-Gide^{(R)}$) with autogenous bone, bovine drived xenograft and combination of the two. Surface morphology and chemical composition was analyzed to understand the physical and chemical characteristics of bioresorbable collagen membrane and their effects on guided bone regeneration. Material and methods: Bioresorbable collagen membrane ($Bio-Gide^{(R)}$), Xenograft Bone(Bio-Oss), Two healthy, adult mongrel dogs were used. Results : 1. Bioresorbable collagen membrane is pure collagen containing large amounts of Glysine, Alanine, Proline and Hydroxyproline. 2. Bioresorbable collagen membrane is a membrane with collagen fibers arranged more loosely and porously compared to the inner surface of canine mucosa: This allows for easier attachment by bone-forming cells. Blood can seep into these spaces between fibers and form clots that help stabilize the membrane. The result is improved healing. 3. Bioresorbable collagen membrane has a bilayered structure: The side to come in contact with soft tissue is smooth and compact. This prevents soft tissue penetration into bony defects. As the side in contact with bone is rough and porous, it serves as a stabilizing structure for bone regeneration by allowing attachment of bone-forming cells. 4. Regardless of whether a membrane had been used or not, the group with autogenous bone and $Bio-Oss^{(R)}$ filling showed the greatest amount of bone fill inside a hole, followed by the group with autogenous bone filling, the group with blood and the group with $Bio-Oss^{(R)}$ Filling in order. 5. When a membrane was inserted, regardless of the type of bone substitute used, a lesser amount of resorption occurred compared to when a membrane was not inserted. 6. The border between bone substitute and surrounding bone was the most indistinct with the group with autogenous bone filling, followed by the group with autogenous bone and $Bio-Oss^{(R)}$ filling, the group with blood, and the group with $Bio-Oss^{(R)}$ filling. 7. Three months after surgery, $Bio-Gide^{(R)}$ and $Bio-Oss^{(R)}$ were distinguishable. Conclusion: The best results were obtained with the group with autogenous bone and $Bio-Oss^{(R)}$ filling used in conjunction with a membrane.

Bending and Compressive Properties of Crystallized TCP/PLLA Composites

  • Kobayashi, Satoshi;Sakamoto, Kazuki
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.287-295
    • /
    • 2009
  • $\beta$-Tricalcium phosphate ($\beta$-TCP) particles reinforced bioresorbable plastics poly-L-lactide (PLLA) composites were prepared by injection molding. The nominal weight ratio of $\beta$-TCP was selected as 5, 10 and 15%. In order to clarify effects of the PLLA crystallinity on the mechanical properties, the specimens were heat treated isothermally. Results of differential scanning calorimetry indicated that the PLLA crystallinity increased with increasing heat treatment temperature. Bending and compressive tests were conducted on the specimen with different $\beta$-TCP contents and crystallinities. The results show that the bending and compressive moduli increased with increasing $\beta$-TCP contents and crystallinity. On the other hand, bending strength decreased with increasing $\beta$-TCP contents. Maximum bending strength was obtained at the heat treatment of $70^{\circ}C$ for 24 h, whereas compressive 0.2% proof strength increased with increasing heat treatment temperature. This difference is attributed to the difference in the microscopic damages.

The Developing Trend in Bioresorbable Stent for Treatment of Coronary Artery Disease (관상동맥질환 치료를 위한 생체흡수형스텐트의 개발 동향)

  • Jeong, Gyeong-Won;Kim, Tae-Hoon;Nah, Jae-Woon;Park, Jun-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.497-502
    • /
    • 2018
  • The coronary artery disease (CAD) is rapidly increasing such as angina pectoris and atherosclerosis. The CAD is induce by cholesterol and calcium like plaque absortion to artery wall. The percutaneouss coronary intervention is non-invasive treatment that narrowed-artery is expand by using balloon catheter and bare metallic stent. The metallic stents have been effective in reducing the dead by coronary artery disease, but the permanent presence of the metallic stent has been associated with persistent inflammation, and incidence of late thrombosis. Therefore, development bioresorbable vascular scaffold (BRS) is rapidly increasing for treatment of long-term complications and arterial restenosis by permanentmetal prosthesis such as stent. The review discusses the BRS trend for successfully development.

DEVELOPMENT OF BONE REGENERATING MATERIAL USING BONE MORPHOGENETIC PROTEIN(rhBMP-2) AND BIORESORBABLE POLYMER (유전자재조합 인간 골형성단백2 및 생흡수성고분자를 이용한 골형성유도체의 개발)

  • Lee, Jong-Ho;Kim, Jong-Won;Ahn, Kang-Min;Kim, Kack-Kyun;Lee, Zang-Hee
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.21 no.4
    • /
    • pp.325-331
    • /
    • 1999
  • We tested the bone regenerating capacity and histologic response of bioresorbable matrix-type implant, which was made with Poly(lactide-co-glycolide)(PLGA) and bone apatite for the carrier of bone morphogenetic protein(BMP). The critical size defect of 8mm in diameter was created at the calvaria of SD rats(n=18), and repaired with polymer implant with $15{\mu}g$ of rhBMP-2(n=9) or without it(n=9). At 2 weeks, 1 months after implantation, the animals were sacrificed(3 animals at every interval and group) and histologically evaluated. The calvarial defect which was repaired with polymer with BMP healed with newly formed bone about 70% of total defect. But that without BMP showed only 0 to under 30% bony healing. Inflammatory response was absent in both group through the experimental period, but there's marked foreign body giant response though it was a little less significant in polymer with BMP group. As the polymer was resorbed, the space was infiltrated and replaced by fibrovascular tissue, not by bone. In conclusion, our formulation of bioresorbable matrix implant loaded with bone morphogenetic protein works good as a bone regenerating material. However, it is mandatory to devise our system to have better osteoinductive and osteoconductive property, and less multinucleated giant cell response.

  • PDF

Histological Evaluation of Bioresorbable Threads in Rats (랫드에서의 생분해성 매선요법에 대한 조직학적 분석)

  • Lee, Chang Gun;Jung, Jaeyun;Hwang, Samnoh;Park, Chan Oh;Hwang, Soonjae;Jo, Minjeong;Sin, Min Hi;Kim, Hyun Ho;Rhee, Ki-Jong
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.217-224
    • /
    • 2018
  • Thread lifting has become popular as a minimally invasive technique for facial rejuvenation. Commercially available threads are composed of poly-L-lactic acid (PLLA), polycaprolactone (PCL), or polydioxanone (PDO). However, the histological changes that occur in response to implanted threads are unclear. The aim of this study was to evaluate histological changes that occur in response to implantation with three types of bioresorbable threads (PLLA, PCL, PDO) in rat skin. PLLA, PCL and PDO threads were implanted in the dorsal skin of Sprague Dawley rats and tissue samples were harvested 2, 4, 8 and 12 weeks post-implantation. To evaluate histologic changes induced by bioresorbable face-lifting threads, tissue samples were stained with hematoxylin & eosin, Masson's trichrome stain and Herovici's collagen stain. All three threads induced neocollagenesis of type 3 collagen in the rat skin. The amount of collagen induced by the threads was dependent on the thread surface area. The PDO cavern-type thread was most effective in inducing neocollagenesis due to its extensive surface area. Our results suggest that type 3 collagen induced by bioresorbable threads depends on the thread surface area to uphold the dermis and contributes to facial rejuvenation.